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Abstract

A tool was developed for Monte Carlo simulation of life

cycle costs using parametric cost modeling. Additionally,

the analysis of the performance of parametric CER cost

estimation has been cut down to a more manageable task.

Models can be built and tested quickly and easily.

Random deviate generators were researched and built.

Several applicable statistical descrption routines were also

implemented. Statistical integrity and great accuracy has

been maintained, while made accessible through an intuitive,

user friendly interface.
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AN INTERACTIVE LIFE CYCLE COST FORECASTING TOOL

I. Introduction

Background

Each year the United States government spends billions

of dollars for manpower and equipment to protect and

preserve the nation. As important as national defense is,

it is only one of many ways the government serves the

people. Programs such as education, transportation, and

human assistance are also necessary parts of government

spending.

Unfortunately the government is not endowed with

unlimited resources. Each program is in constant

competition with others for funding. Indeed a large part of

our political system is dedicated to the parsing and

distribution of tax dollars. Since the government is tasked

with performing many services with limited resources, it is

compelled to get the most from each tax dollar spent. Since

many of the dollars spent on national defense go toward

acquiring new weapon systems, the government should buy the

least expensive piece of hardware capable of doing the job,

or buy the best piece of hardware while staying within the

budgetary constraints. The latter case, maximizing



efficiency can be demonstrated by the simple optimization

problem below:

Max E = F(A,B) (1)

St. C = C A + C8  (2)

Where CA and C6 are cost functions, linear or nonlinear,

for Systems A and B. These cost functions may be based on

quantity purchased. C is a budgetary constraint, and E is

some production function representing the combined

performance of systems A and B. Note that this is for a

given configuration. The E represents effectiveness and is

equated to some function of the quantity of systems A and B

purchased.

Either strategy, maximizing effectiveness or minimizing

cost, leads to some type of cost comparison among the

proposed systems. The problem is that new weapon systems do

not come off the shelf with clear cut price tags. The cost

of each program must be estimated, then compared with the

other programs in question. It is easy to see that realized

efficiency depends greatly on the quality of the cost

estimation.

Fisher, as well as others, has suggested that to

properly estimate the budgetary impact of a particular

system, all phases of the program must be examined

(Fisher:66). Purchase price alone does not constitute the
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system cost. There are research and development, testing,

procurement, operation, and maintenance phases that must be

considered. All spending associated with a program is

called the life cycle cost (LCC). The DoD Life Cycle

Costing Guide For System Acquisitions defines LCC.

The LCC system is the total cost to the
Government of acquisition and ownership of that
system over its full life. It includes the cost
of development, acquisition, operation, support
and where applicable, disposal. (DoD:1-1)

Life cycle costing has several advantages over simple

purchase price estimation. Since life cycle costing

includes all the phases of the program's life, a more

realistic look at the budgetary effect is achieved. Figure

1 demonstrates the large portion of DoD funds used for

operation and support, costs not included in the purchase

price. It is very possible that system A may have a lower

purchase price than system B, but have such a large manning

and support requirement that these costs overwhelm the

purchase price and make B a more economical choice.

Since the stages of the program occur chronologically,

LCC also allows for the "timing" of the money spent. Banks

exist and flourish all over the world profiting almost

exclusively from the time value of money. So the timing of

money spent by competing programs can be a very significant

factor.

3



CONSTRUCTION $4.

OPERATION RND MRINTENRNCE S38.1
PERSONNEL $38.9

TOTRL = t128

Figure 1 Department of Defense 1979 Budget
Billions of Dollars (Seldon:2)

Obi ective

The objective of this research is to develop an easy to

use, flexible, PC-based Monte Carlo simulation for the

preliminary estimation or forecasting, of life cycle costs.

4



Subobiectives

Model Definition. The first step is to survey life

cycle cost models by reviewing literature. Identification

of the proper model must precede all other steps.

Model Construction. Construction of the mathematical

model, which means creation of the source code, is the next

step in using the LCC cost model chosen. The actual

mathematical calculations must be coded in this step.

It will be necessary to develop random number

generators, the basis of the Monte Carlo simulation.

Development of fast, competent generators is crucial to

achieving the overall objective.

Software for the analysis of the LCC outputs must also

be developed. The next section of code is the LCC

distribution identification routines. Quantile estimation

is closely linked to distribution identification, and it

must also be coded.

Software Production. After verification of the various

mathematical software routines, these routines must be

integrated into a single program with a logical, flexible

control structure. The integration of the routines is no

more important than the development of a user friendly

interface. The program must be easy to use.

Documentation. The documentation must be polished up

and formatted. This documentation must include a User's

Manual.

5



I. LITERATURE REVIEW

Introduction

The goal of this research is to design and build a

flexible, easy to use tool for Monte Carlo simulation of the

life cycle costs of weapon systems, including estimation of

the distribution of these costs. Monte Carlo simulation is

simply a compilation of random generations aggregated to

infer something about the real world. The tool must

generate samples from a cost distribution according to

historic data about past weapon system attributes and costs.

The areas of literature that must be reviewed for this

effort include theoretical life cycle costing models,

statistical estimation, and random number generation.

Chapter Overview

This chapter will present a brief overview of the types

of LCC models available in the literature, providing the

characteristics of each model, good and bad.

Since Monte Carlo simulation involves the

representation of random events, the random number generator

used by the modeling program must generate numbers that

actually appear to be random. This chapter will review

promising methods for generating the random numbers needed

6



by the life cycle cost model. Sample output from the random

deviate generators actually used can be found in Appendix B.

LCC Modeling

The literature suggests that there are basically three

types of LCC models (Collins:55; Krisch:1527; Seldon:161;

DoD:3-3):

1) Parametric cost factor models

2) Engineering cost factor models

3) Accounting models

Parametric. The parametric cost factor model is named

so "because the physical and performance measures are

commonly called parameters in the estimating equations"

used to forecast costs (DoD:3-3). The weight or number of

engines on an aircraft may be used, for instance, to

estimate the production and operating costs. Krisch

explains that curve fitting can be used to derive Cost

Estimating Relationships (CER) between cost and production

schedule and system characteristics. These CER's can be

adjusted to make the best estimate possible from past data

(Krisch:1527).

Several advantages are associated with using this type

of cost estimation, as outlined by the DoD LifeCyl

Costing Guide For System Acquisitions:
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1) Cost estimates are based on general system
characteristics, no detailed information is
necessary;

2) Model is very fast and easy to use;

3) Model is resistant to user bias;

4) Since parametric statistics are used in
generating the forecasts, confidence intervals
(CI's) can be placed on the forecasts (DoD:3-6).

It is in this last advantage that lies the real power of

this type of modeling.

Figure 2 shows an example of a parametric CER model.

Notice that the costs are being calculated from general

characteristics, and that there is some error associated

with each equation.

Engineering. Many authors ignore this model or group

it with the model above in the "cost factor" category

(Krisch:1527; Collins:54). This is because the engineering

model is very similar to the parametric CER model

mechanically. The system is broken down into cost

components like above, and cost relationships are used to

determine the cost of each component.

The difference in the CER and engineering models lies

in the type estimating relationships used. The model above

uses relationships of convenience, which may or may not

capture a great deal of the cost variance. The engineering

model uses specific hardware-to-cost relationships to

8



EOST REPRESENTRTION FOR
1 E-130

CER's

RIRFRRME = 200,000 + 75 X, + e

ENGINES = 2,000 + 63 X2 + e

ELECTRONICS = 530 * 200 X3 + e

MRNPOWER = 300,000 +400,000 X 4 + e

OPS = 500.000 + 12.000 X 5 + e

WHERE

X I = airframe weight
X2 = thrust
X3 = number radios
X4= crewmembers
X!5 y early Flying hours
e = error, iid N(0,MSE)

Figure 2 Parametric CER cost model example.

determine cost. Obviously this takes more information, and

indeed DoD does not recommend this as a method for

preliminary work since the level of detail needed is usually

obtained after many crucial decisions (based on cost) have

been made (DoD:3-12). The main advantages of this method

are increased accuracy and hence more detailed sensitivity

9



analysis of differing configurations, and ease of transition

from a CER model (DoD:3-11).

Figure 3 is an example of an engineering model. Notice

that the cost equations are more detail than in the CER

model. Also the cost equations do not have the same error

COST REPRESENTATION FOR
1 -- 130

cost equations

RIRFRRME = 13 X, + 109 X 2 + 12X 3 +

2.5 X 4 + .03 X 5 + 750 X,

ENGINES = 150,000 X?+ 520 X 8 + 3700 Xg +
5200 X1 0

WHERE
x, = ribs in Feusaloge
X2 = windows
X3 = aluminum sq. Ft.
X4 = pipes Ft.
X 5 = rivets
X? = hUdroulic pumps
X1 = compressors
X6 = Fuel pumps
x.= propellars
Xio = Fuel Filtration sUstems

Figure 3 Engineering cost model example.

associated with the CER's because these cost equations are

10



the real world relationships between physical construction

and cost.

Accounting. This seems to be the most detailed of the

models types, summing costs over system components at a very

low level, taking into account such needs as personnel,

training, etc. This methods takes an enormous amount of

information, such as lists of "contractor supplied LRU's ...

flying hour programs and development scenarios ... Labor

rates, inventory costs and repair cycies times, for example"

(Collins:55).

Figure 4 shows an example of a portion of an accounting

model. Notice that subsystems must be accounted for at a

very low level. This would continue until virtually every

part in the aircraft, and all the service costs, have been

accounted for.

The reader may notice that the different types of

models seem to be a progression of more and more detailed

cost models. For this reason there seems to be a consensus

among authors that the less specific models are more useful

early in the acquisition cycle when little is known about

the proposed system (Collins:56; DoD:3-10; Krisch:1527).

ii



COST REPRESENTRTION FOR
1 [-130

RIRFRAME

rivets door adjustment door seals
screws hUdraulic pumps carpet
windows hUdraulic lines boosters
Floor board interior lights light bulbs
hinges throttle cables Uoke
seats hydraulic valves Insulation
wire manual switches

AIRFRRME

.4.

totol cost

Random Number Generation

This portion of the literature review is concerned with

the generation of random numbers, the simulation of samples

conforming to a given cumulative density function. A

cumulative density function (CDF), or distribution, is

simply a function that makes a generalization about a

population of values. Given an initial value, the CDF will

identify the probability that a number drawn at random from

12



the specified distribution (or population of numbers) will

be smaller than the initial value:

CDF(X) = P(x 5 X) (3)

A number drawn at random from the population is called

a random deviate since we don't know exactly what its value

will be, or how far it will deviate from the expected value.

Random deviates are useful because they allow modelers to

sample from real-world processes.

Computer programming is by nature very structured,

making the generation of random numbers no trivial matter.

Winchmann and Hill offer the following from von Neumann,

"Anyone who considers arithmetical methods of producing

random digits is, of course, in a state of sin"

(Winchmann:127). Since any numbers generated by the methods

to follow are reproducible by rerunning the same code again,

they are not truly random. These numbers are called pseudo

random deviates. These pseudo random deviates can be just

as effective as truly random deviates if the generation

method is designed with care, and the reproducibility they

allow can be an aid in experimentation.

General Sampling Techniques. There are various methods

for generating samples from some specified distribution.

13



The following methods were drawn from Pritsker, but they are

commonly found in the literature (Pritsker:707):

1) Inverse transformation

2) Rejection

3) Composition

Ross adds another general technique, also common in the

literature (Ross:442):

4) Hazard rate

Inverse Transformation. Pritsker makes it clear

that the inverse transformation, or inverse CDF method, is

by far the easiest method to use (Pritsker:708). This method

entails using a function that is the inverse of the CDF

function to generate properly distributed variables. Since

the CDF returns a probability (between zero and one)

associated with some value, the inverse CDF begins with a

number between zero and one to produce the value associated

with the given level of probability. Since the CDF of the

distribution in question must be invertible, this method is

not applicable for some of the commonly used distributions.

Like all other methods discussed in this section the inverse

transform method requires the generation of numbers

uniformly distributed between zero and one. A simple

uniform random number generator (U[0,1]) may be found in

Winchmann et al (not used here), but the construction of

14



U(0,1) generators is not the subject of this section

(Winchmann:127-128).

Rejection. Tadikamalla gives a very good summary of

the rejection method, also known as acceptance-rejection, as

developed by Von Neumann (Tadikamalla:925-928). Rather than

using the CDF described above, rejection makes use of the

PDF associated with the distribution being modeled. The PDF

is the first algebraic derivative of the CDF. The area

under the PDF curve, taken between two points, gives the

probability that a randomly drawn value will lie between the

two points. The key is to find some other function, whose

value returned for a given zero-one number will always be

larger the value of the PDF at the same point. This is

known as a majorizing function. This majorizing function

must be easy to sample from (by inverse CDF or some other

method).

A uniform zero-one variate and a variate from the

majorizing function are drawn. If the uniform variate is

smaller than the ratio of majorizing function value to PDF

value, keep the variate as a sample from the designated

distribution, otherwise draw new variates and try again. It

stands to reason that the closer the majorizing function and

the real PDF are, the fewer variates are rejected; so the

smaller the difference between PDF and majorizing function,

the more efficiently random numbers are generated

(Tadikamalla:925-928).

15



Composition. This method may be used when the

density function can be written as a weighted sum of other

distributions (with the sum of weighting factors totaling

one [Pritsker:710]). To sample from the designated

distribution, fist sample from the component distributions

and sum according to the weighting factors to create one

random variable.

Hazard Rate. The hazard function (H) is defined as

the ratio of the PDF to the CDF (Ross:442):

H = PDF/CDF = P(t < x < t + dtj x > t) (4)

This specifies the probability of a random variable x being

greater than some value t + dt given that x is greater than

t. Leemis (Leemis:892-894) as well as others recognize that

the hazard function for any probability distribution has

unit exponential distribution, a known probability

structure. The inverse of this hazard rate can be used to

generate random variables similar to the inverse

transformation method.

There are other methods for generating random variables

that make use of the special properties of particular

distributions. Special algorithms have been developed for

sampling from most of the commonly used distributions which

are faster than the general techniques. While Pritsker

(Pritsker:710-711) gives a tidy outline of these, only the

16



meth.ds applicable to the distributions needed for this

research will be discussed in the next section. Also

outlined by Pritsker is the idea that there may be useful

working relationships among the various methods for

generating random variables.

... the composition method may employ the
inverse transformation method to select a
subdistribution and then any sampling procedure to
obtain a random sample from the subdistribution.
The acceptance/rejection method is frequently used
where majorizing functions are defined for
portions of the distribution function. Thus, it
should be clear that the methods for generating
random samples are not necessarily used
independently.(Pritsker:710)

Specific Generation Techniques. Since the rajority of

the random numbers needed for life cycle cost estimating

must be distributed according to the beta cistribution, this

section will focus on generating beta deviates. The beta is

useful for modeling symmetric or skewed unimodal data. The

beta differs from the normal by the lack of long tails that

extend out to positive and negative infinity, enabling the

representation of populations having discrete upper an lower

limits. Unfortunately the CDF of the beta distribution

cannot be inverted, so the inverse CDF method is of no use.

Furthermore, the combination of the first four moments of

the beta make it very difficult to sample from by any

method. For that reason the literature is mainly concerned

17



with the generation of two-parameter beta variates as the

ratio of two-parameter gamma variates. Ross offers the

following formula for obtaining a beta variable with

parameters n and m (Ross:452):

Beta(n,m) = Gamma(n,l)/ (Gamma(n,1)+Gamma(m,1) (5)

The parameters are often noted as (a,P) elsewhere in the

literature.

Fishman provides a comparison of his improved method

for generating gamma deviates to the algorithm of Wallace,

developed earlier. The following is Wallace's algorithm as

reported by Fishman:

For integral a method 2 uses (7) [see paragraph
below]. For non-integral a the six steps are:

1. Generate a uniform deviate U.
2. If U <= 1 - a + < a > then generate X' from (7)

using b=<a>.
3. Otherwise, generate X' from (7) using b= <a + i>.
4. Generate a uniform deviate U.
5. If U <= (X'/t') t' / (1-t'+t'X'/t) then X' has the

pdf in (2).
6. Otherwise, go to step 1. (Fishman:408)

where t is <a>, the largest integer contained in a, and t'

is a-t. Fishman's (7) refers to the negative natural log of

a multiplicative sum of a uniform deviates, the standard

18



method for calculating integral parameter gammas

(Fishman:408;Tadikamalla:925;Wallace:693):

-Ln U(0,1)4 (6)

while (2) refers to (Fishman:407):

f x (X,a,p)= c(a,)a(a,p)g(X,a,f)h(X,a,p) 0 S X :5

0 elsewhere (7)

0 s

(8)

To h(X,a,p)dx = 1 (9)

0 < g(X, a,/3) < , (10)

a( a,P) < i/g(X, a,P), (11)

1/c(a,p) =a(af) : g(X,a,p) h(a,P) dx (12)

The method proposed by Fishman is computationally

easier and proves faster as implemented on the IBM 360/75.

The steps for Fishman's algorithm are:

1) draw an exponential variable X with unit mean

2) draw a U(0,1) number,

3) if U(0,1) <= (X/exp(X+1)) a-I then multiply X
by a, then keeping this product as a gamma random
variable other wise return to step 1.
(Fishman:408).

19



Although the two methods may seem fundamentally

different, they differ only in the choice of the majorizing

function h(X,a,B), which does not even clearly appear in

Fishman's method. Both these methods employ the rejection

technique outlined in the general techniques section.

Another similar method is proposed by Tadikamalla, and

compares favorably with Fishman for small values of a and

is considerable better for larger values of a. This method

uses the generation of Laplace variates

(Tadikamalla:925-928).

Since many random beta variates will be generated in

the course of modeling life cycle costs, efficiency and

speed is very important. Kronmal and Peterson propose a

modified Rejection method with Acceptance-Complement

methodology that avoids repeating steps and has useful

design flexibilities (Kronmal:271-281).

Greenberg has implemented a new density function able

to approximate the type of data generally modeled by the

non-integral gamma distribution through the mixture of

integral gamma deviates which are much more quickly

calculated (Greenberg:32-33). The method is quite simple

and fast, but is not a true gamma, and using a ratio to

generate beta variable is not recommended by Greenberg;

however, it is possible that this density function could be

20



used to directly model the data used to estimate costs,

rather than to mimic a beta distribution.

Along the same lines , Ramberg, Dudewicz, Tadikamalla,

and Mykytka have proposed a Generalized Lambda Distribution

(GLD) that can take on the shape of virtually any of the

commonly used distributions (Ramberg:210-214). Once again,

the beta cannot be simulated directly but the authors have

confidence in betas generated via ratios of gamma

approximations. Although this would be slower than using

one of the more direct gamma generators, the power of the

GLD lies in its uses for exploring sensitivity analysis.

Since the distribution can be shaped virtUally any way, it

can be tweaked to test the sensitivity of a model to any

certain input distribution assumption. Indeed such a study

was undertaken by the authors (Ramberg:210-214).

Also mentioned in the general techniques section was

the use of the hazard function. Recall that the hazard

function is the ratio of CDF to PDF and is unit exponential,

and known density structure. A proof is offered by Devroye

(Devroye:281). Devroye offers as many hazard rate based

generation methods as have been noted already in this

section, but applications to the beta distribution do not

seem to be available in the literature.
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III. Methodology

Model Definition

The first step in identifying the proper model is to

research the models available. Of the various types of LCC

modeling found in the literature, the methodology that is

most appropriate for preliminary analysis is the parametric

CER method, or cost factor model.

The cost factor model uses CER's and single variables

as cost components to define the total cost of .the system.

For example, for some aircraft the radio cost may be

represented by one single variable, the navigation system by

a CER, and the engines by more CER's. Each of these cost

factors also has some specific time frame (R&D costs are up

front whereas operating costs occur later in system life).

CER'S - Recall that a CER is a cost estimating

relationship (a regression equation). For example, the cost

of a radio may be estimated by three dollars per channel it

receives, twelve dollars per watt of transmitting power,

plus fifty dollars for the basic chassis:

22



C =6 0 + 9 1 X I + P 2 X2  (13)

where

C = radio cost
P c $50.00
P 1= $3.00
S2= $12.00

X I= channels
X 2= watts transmitting power

CER's attempt to estimate costs for future products

based on characteristics shared with past products. The

future products must have characteristics in common with the

past products, to allow forecasting according to regression

equations (based on those characteristics). Forecasting the

cost of new technologies must be performed with great care.

Obviously the qost of the B-2 engines cannot be estimated by

comparison with the engines from the F-84, because the two

do not share many characteristics.

The characteristics are the explanatory variables for

the CER's, or regression equations. The distributions and

parameters of each input variable must be specified.

Additionally the 6 parameter estimates and their covariances

must be known, along with the MSE of the regression.

Three basic types of CER's will be available in the

model; natural logarithm, learning curve, and linear

(regular) with explanatory variable power transformations

allowed (Box:531). The overall system cost may be composed
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of up to twenty CER's, with each CER allowed up to ten

components, or explanatory variables.

SINGLE VARIADLES - Some costs can be adequately

represented by a single variable from one of the eleven

available distributions. For example, the cost of a tire

may be normally distributed by N(150,12) due to fluctuations

in availability. Again the distribution and parameters for

each variable must be specified when the system is defined.

A limit of twenty single variable cost components imposed.

MONTE CARLO METHODOLOGY

The cost simulation methodology will be to predict the

cost associated with each CER cost component and each single

variable cost component (through random number generation),

summing all these up to get one overall estimate of system

cost:

n m
TOTAL COST ESTIMATE = CER i + Z single variable (14)

j=1 k=1

where

n = number of CER's
m = number of single variable cost components.

By viewing many repetitions of this estimate the

analyst may get an idea of the true cost distribution

underlying these sample costs.

CER'S - Predicting the cost associated with one CER can

be P very complicated task. The following steps capture the
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essence of the process. These steps are detailed more

thoroughly in Chapter IV.

1) draw a set of dependent P parameters from a
multivariate normal distribution according to the
P covariance matrix.

2) sample each explanatory variable from the
proper distribution.

3) transform each variable by the appropriate
power.

4) multiply each transformed variable by the
appropriate 6 value.

5) sum the products.

6) add a normally distributed N(0,MSE) value to
the sum.

7) distribute the value of the sum according to
the time phase specifications, then find the
present values.

SINGLE VARIABLES - Single variable cost components are

much simpler to simulate. Each variablb is sampled from the

appropriate distribution, time phased, and converted to a

present value.

TIME PHASED SPENDING

After each cost component has been estimated (CER's and

single variable cost components), it must be adjusted to a

Present Value (PV) before it is added to the overall system

cost. Obviously money spent during different phases will

have different PV's due to the discount rate (interest).

For example: Farmer Brown owes $100.00 to the Farm

Equipment Corporation and $100.00 to the General keed Store.
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However, the equipment bill is not due until next year. If

the current interest rate at the local bank is 10%, Farmer

Brown may invest $90.91 and allow the money to collect

interest, or "grow" to $100.00 over the next year:

PV($100.00) = 100/(1 + r) N = $90.91 (15)

where

r = periodic interest rate, 10% here
N = number of periods into the future, 1 here

The feed bill however, must be paid now, costing Farmer

Brown the entire $100.00. This is the concept behind

present values; "How much will I have to invest now to have

$XXX.XX at some point in the future?" Obviously this depends

on how far into the future the money is due and the

prevailing interest (or discount) rate.

This creates a need for the user to specify the timing

of the money to be spent and the current interest rate. The

spending process is broken into four periods, called the

NOCOST period, Phase In period (PI), Constant period (CON),

and Phase Out period (PO). The user must specify the length

of each of the time periods (which may be zero) for each

cost component.

Figure 5 shows examples of various time phase

configurations. The total area associated with each year

(ie. under the curve between 0 and 1 for the first year)

will determine how much of the money from the cost component
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NOCOST=0
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PI=0
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NOCOST CON
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PI-2
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PI PO

1 2 3 4 5 6 7 0 9 l

Figure 5 Spending timelines for cost components.

in question will be spent that year. Note that the second

spending timeline has no NOCOST, PI, or P0 period, and the

last has only PI and PO periods. Remember that each

separate cost component has its own timeline, and that the

sum of these timelines would give an overall $/year timeline

for the system.
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Although this method does not nail down the exact

amount of money to be spent each year, it requires only four

time parameters from the user, and it will suffice for

preliminary cost analysis.

OUTPUT ANALYSIS

Now that a set of cost estimates for the system in

question has been produced, through Monte Carlo simulation,

the set must be examined. It is wise to gather as much

information as possible about the simulation and its output

since the experiment cannot be run with the real world

system. The object of this section is to guide the user

through descriptive tests and procedures designed to explore

the underlying distribution of possible costs for the system

in question.

FREQUENCY HISTOGRAM - A frequency histogram is a

graphical representation of the number of data points that

fall into each of a set of numerical ranges, or classes.

Viewing a histogram can lend insight to how the population

underlying the data sample is distributed. Figure 6 is an

example of a histogram (produced by the Frequency Histogram

option of this software and converted to black and white).

This figure shows the number of data points that fall into

each of the numerical classes. The upper class bounds are

written at the bottom of the graph under the boundaries of

the bars. The X axis is in the units of the data set. The
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Figure 6 Example of a histogram.

Y axis is the frequency of observations.

MOMNTS - The first two moments of a sample, the mean

and variance, give some idea of the data range and spread.

This information can facilitate comparisons among data sets.

Also useful are the extreme high and low values, the

standard error of the variance estimator, and the median, or
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the fiftieth percentile of the data (see the next heading

for more percentile information).

QUANTILE ESTIMATION - Quantiles, or percentiles, deal

with the order, or rank, of data points. The fiftieth

percentile is the middle point of the data after the set has

been sorted (ie. of 3, 4, and 5, 4 is the fiftieth

percentile). The fiftieth percentile is also called the

median. Unless the data of interest is normally or

uniformly distributed, the median is often more useful than

the mean in describing the typical value of the data

points.

The value of any quantile, from anywhere above 0 to

anywhere below 100, can be estimated. Thus at the ninetieth

percentile value, X, there is a ninety percent chance that

subsequent random values (from the same distribution) will

be lower than X. Another way to state this is that ninety

percent of the values drawn from this distribution will be

less than X.

NON-PARAMETRIC PROBABILITY - At times it would be very

useful to know the probability of drawing a number smaller

than some reference value from a give population. This is a

very simple problem should you know the true distribution of

the population and its parameters (mean, variance, high,

low, a, ft etc.). However, the analyst will rarely know the

distribution type of the simulation output data. Rather
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than performing some lengthy set of weak tests to ascertain

which distribution is at hand, it is possible to use

nonparametric order statistics to estimate the probability

introduced above.

The problem of finding a probability associated with

some value, is the opposite of quantile estimation, finding

the value associated with some level of probability. Both

quantiles and probabilities are yet another way to conduct

comparisons among the cost distribution of competing

systems.

Note that the descriptive methods described so far are

non-parametric, meaning they do not require any assumptions

about the distribution underlying the sample data.

T-TESTS FOR SAMPLE MEANS - Through T-tests the analyst

may test the hypothesis that the means of two systems' cost

distributions are the same. These tests are very important

because point estimates of means, as well as other

parameters, can be very misleading. The fact that the mean

of one sample is higher that the mean of a sample drawn from

a different distribution, is not enough information to

conclude that the underlying distribution means share the

same relationship.

T-TEST 1 - This T-test is for two independent

populations with the same variance (a2 ). Although the

variance need not be known, the hypothesis of ai2 = 022

must be tested (with failure to reject) before this T-test
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can be used. This T-test assumes normally distributed

samples are used, which is a good assumption for large

samples since X approches normality as the sample size

approaches infinity.

T-TEST 2 - This T-test is for two populations

with the unequal variances (C2). The variances need not be

known, and need not be tested for equality. However, this

test should not be used unless the test above is invalid due

to differing variances. The test above is a much stronger

test, meaning it will be able to reject the null hypothesis

(P',= P 2 ) more often, without more error. This T-test

assumes normally distributed samples and independent

populations, like the test above.

T-TEST 3 - This test is for paired data. It

is not ap opriate for analyzing the output from this Monte

Carlo simulation, but it is offered for use with other

simulations or observations. The populations in question

should be dependent. Elements within pairs of observations

can and should be correlated, being observed from similar

scenarios. For a more complete discussion of paired data

see Johnson (374) or any other elementary statistics text.

NON-PARAMETRIC TESTING - The following section will

outline how to perform tests similar to the T-tests above,

but without making assumptions about the underlying

distributions. Additionally these tests will allow
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hypothesis testing for any quantile, or probability, for any

two distributions.

TEST FOR EQUAL QUANTILES - Quantile estimation

can be used to test the hypothesis that the Nth quantiles

of two distributions are equal, provided confidence

intervals (CI's) have been also estimated. Simply stated,

if the CI for the Nth quantile of sample set A intersects

with the CI for the Nt" quantile of sample set B, then fail

to reject the null hypothesis. Should the two CI's not

intersect, reject the null hypothesis.

It should be noted that such joint use of the two

confidence intervals (each encompassing a amount of risk)

compounds the risk associated with the a values used to

create the confidence intervals.

For example, if the two confidence intervals are

created with a = 0.1 (as in the program) then the total

confidence in the outcome of the test is a product of the

separate confidences:

N

C = (1 - (16)

or

C (1 - al) * (1 - a 2 ) = 0.81 (17)

providing the separate confidence intervals are independent

(they are when produced by this Monte Carlo simulation

program). If the two intervals were not independent (ie.
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produced from the same run of some other simulation program)

the a's are added to get the overall amount of risk

associated with the test:

C z 1 - z a (18)

or

C a 1 - (a 1 + a 2) = 0.8 (19)

would describe the confidence in the test above, if the

confidence intervals were not independent. This is known as

the Bonferroni inequality (Kleijnen:41). The actual

confidence is greater than or equal to the resulting

confidence factor, thus the name evolved.
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IV. IMPLEMENTATION

RANDOM VARIABLES

The heart of a Monte Carlo simulation is the set of

random number generators, and the heart of all the random

number generators is the uniform(0,1) generator used to feed

them. This U(0,1) generator was taken from Numerical

Recipes: The Art of Scientific Computing (Press:199). This

generator was tested for mean, variance, and serial

correlation (see Appendix B). There were no apparent

problevs.

Although it is possible to speed up the random number

generators by programming them in assembly language, this

hampers flexibility in support of the code. So assembly

language was not used. All the univariate distributions

below are available for single variable cost components as

well as CER input variables.

BETA SAMPLING - The nine beta distributions shown in

Figure 7, taken from Dienemann, provide a wice range of

characteristics. The beta deviates are generated using

the ratio of gammas discussed in Chapter II, Eq(3). The

gamma variables used for the ratios are generated using

either Fishman's or Wallace's method (one is much faster for

a 5 1.0). Both are discussed in Chapter II. The beta
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Figure 7 Input uncertainty probability distributions
(Dienemann: 14).

deviate is generated on the (0,1) interval and multiplied by

(hi-low) and then added to the low value specified by the

user:

Beta(a,P) (ho.. Beta(a,p)(, * (hi-low) + low (20)

NORMAL SAMPLING - In addition, the normal distribution

is also available for CER explanatory variables and single

variable cost components. The analyst should exercise
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caution when specifying a cost as a normally distributed

deviate since normally distributed variables can easily have

neiative values (which make no sense in terms of cost and

cannot be used in power transformations). The normal

deviate is calculate by the following equation (Ross:447):

N(0,1) = (-2 ln(U 1(0,1)))I2 * cos(2n U 2(0,1)) (21)

This produces a standard normal deviate. To achieve a

deviate from the proper distribution, the value must be

multiplied by the standard deviation and added to the mean:

N(p,C 2 ) = N(0,1) * (a) + p (22)

UNIFORM SAMPLING - [The easiest of them all.] A

uniform sample is create by multiplying the U(0,1) deviate

by the (hi-low) and adding it to the low:

U(low,hi) = U(0,1) * (hi-low) + low (23)

MULTIVARIATE NORMAL SAMPLING - This is the most direct

and technically pleasing way to account for the variance of

the P parameters of the CER's. The P's must be distributed

according to their means and the covariance matrix,

#est. (P,(X'X)-I C2). The following set of steps captures

the essence of the process:
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1) reduce the covariance matrix to its Cholesky
square root (Maindonald:17)
2) draw a vector of independent, standard normal

deviates

3) multiply the vector by the Cholesky matrix

4) add the estimated means to the remaining vector
of deviates.

or

Qsample N*N+ IAT (24)

where

C Cholesky square root of covariance matrix
N= vector of independent standard normal

deviates
A HAT = estimated means
Asample = one sampled vector of dependent normals

This is the same type of algorithm used by the IMSL library

routine.

COST ESTIMATION

Each CER is evaluated according to its type. Linear

CER's are the simplest (described in Chapter III). The

natural logarithm CER's are handled much like the linear

CER's with two exceptions:

1) after each explanatory variable is sampled, its
natural log is taken

2) after the rolling sum for that CER is totalled
its exponent is taken (inverse natural log, ie.

) .tal
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Let it be clear that the X variable must be specified

in its actual form for Ln CER's; the program will take the

In of the explanatory variables durirg the calculations.

The output variable is return in its standard form as well,

the exponentiation is taken care of by the program.

For example, suppose

Y = X P (24)

and the X variables are uniformly distributed between 5 and

10. The P parameters are estimated by:

Ln(y) = P1 Ln(X I) + )2 Ln(X 2). (25)

with linear regression software. For the purposes of this

program, X, and X 2 should be described as uniform with

low=5 and hi=10. The program will handle the natural

logarithms and output Y (not Ln[y]).

The learning curve CER adds one more twist. It too is

a natural log process, but after the final CER value (eTota)

is calculated, it is multiplied by X1, the first

explanatory variable. This is because learning curve CER's

apply to individual parts, needing to be multiplied by the

total number of parts purchased (XI) to find the total cost

for that component. Like the Ln CER's, the variables for
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the learning curve CER's should be specified in standard

form (non-log).

POWER TRANSFORMATIONS

Power transformations on the input variables can lend

extra explanatory power to !lnear equations. In essence,

these transformations allow nonlinear fitting with linear

software and methodology.

The process for finding the optimal power

transformations (Box:) has been implemented along with a

basic regression tool in the limited version of MATRIX (also

written by the author). This implementation of the Box

algorithm accepts up to 39 input variables and up to 80

observations, which is usually adequate in light of the

small data sets used to produce CER's. It should be noted

that power transformations can only be estimated by using

the original data. The user must first estimate the power

transformation, then transform the data and generate his own

new CER.

Note: MATRIX cannot take a power transformation on a

variable with a negative value. Ensure that no power

transformation is specified for any variable that can

possibly be negative. Be especially wary of normally

distributed variables.

Use of this program will provide the user with the

optimal power transformation value (a) for each explanatory
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variable (one CER at a time). Since this is accomplished

through successive regressions, the original data used to

generate the CER must also be used to find the correct

transformation.

For example, if the fixed part of the model is

actually:

y4 1/3 (26)

the algorithm will return a values of 4.0 and 0.33 (or very

near there) for X, and X 2 respectively when given the X

matrix and Y vector. The analyst must then make the

transformations to the X data and estimate a new CER (MATRIX

can do both). The a values and the new P values (along with

covariances and MSE) that are estimated using the MATRIX

program are then entered during the CER definition phase of

the model builder program.

Box and Draper (Box:296) offer a lengthy discussion on

process of estimating power transormations which boils down

to the following steps:

1) fita themodelY,= 1 jPi Xi + error,

2) form Z i, = ) i * X i, * Ln(X )

3) fit a model with the Z's as new input variables,
Y u=1 iX + Aj Z, + error

i
4) for A i that are significant (using t-test), set
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5) raise X i to the a , power for all a i that are
significant, across all observations.

6) repeat steps 1-5 until no Z's are significant,
keeping track of the cumulative effect of each a.

TIME PHASED SPENDING

Remember that each CER of single variable cost

component has its own spending timeline defined by NOCOST,

PI, CON, and PO. Figure 5 shows the spending time line for

a CER. The total length of this spending process is seven

years (total of NOCOST, PI, CON, and PO). This means that

the money associated with the CER (the output variable) will

be spent in seven lump sums, one payment at the end of each

year (the model assumes spending at the end of each period).

NOTE: The actual spending profile should be based upon

the likely pattern of payments to the constractor (progress

payments are often embodied in the contract). This may or

may not correspond to the expected delivery date(s) of the

hardware.

The goal is to find how much of the money is spent each

year, as specified by the four time period values. The sum

to be paid at the end of each year is proportional to the

amount of area under the curve in the block for that year.

In Figure 8, the area of C, associated with year 1, is just

over 3% of the total area:

proportion = C / (A + B) = 0.1666 / 5.5 = .03 (27)
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SPENDING FOR YEAR 1 C/(R*B) * STOTRL

PV FOR YEAR I PAYMENT = (C/(AB) * STOTRL)/(Ir)

Where r is the interest rate

Figure 8 Present value calculations for time phased
spending.

That means that just over 3% of the total cost associated

with this CER will be incurred at the end of the first

year. The sum due at the end of each year is calculated in

the same basic geometric fashion.
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Once the total cost associated with one cost element

has been broken down into yearly expenditures, each

expenditure must be adjusted to a present value. The

adjustment is made with Eq (13) from Chapter III. The sum

of all these present values:

Component cost = z PV (28)

where

N = nocost+pi+con+po (years over which to spend money)

is the final cost associated with this one cost element (CER

in this case). The total system cost (life cycle cost) will

be the sum of the present values of all the cost components:

M K
TOTAL COST = I PV (VARJ) + I PV (CERQ (29)

J=1 P=I

WHERE

M = number of variable cost components
K = number of CER's

Software Production

The routines have been be consolidated into a single

program with a homogenous control structure. The user

interface is a system of pop-up menus and windows with

cursor selection for novice users, as well as first letter

selection to facilitate "command language" use by

experienced users.
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Documentation

The User's Manual (Appendix A) will provide every bit

of information needed to operate this software. The

function of each menu item is discussed, and a one example

tutorial is provided.

Appendix C provides all the source code for the Monte

Carlo simulation program and the MATRIX program. Inline

comments and the readable style of Pascal code make it quite

understandable.
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V. CONCLUSIONS AND RECOMMENDATIONS

THE GOAL

The goal of this effort was to develop a tool to enable

quick preliminary analysis and comparison of weapon system

costs. That goal was realized. The PC environment is quite

adequate for the simulation of LCC costs. Parametric LCC

estimation is both quick and easy.

VALIDATION/VERIFICATION

Verification was performed on each procedure and the

system as a whole. Remember that verification is checking

to see if the code performs as intended. Validation, on the

other hand, is checking to see that the methodology that has

been implemented in the code actually model the real world

closely enough.

Validation is difficult because this software is a

model building tool. The user builds his own model of the

real world with the CER's and single variable cost

components he uses to describe the costs.

This program will accurately and consistently produce

forecasts of the costs, as they are described by the user.

Whether or not the user's model accurately captures the

essence of his part of reality is beyond the control of the

author. Bottom line: the user must validate his own model.
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RECOMMENDATIONS FOR FUTURE RESEARCH

VARIANCE REDUCTION - Each output parameter generated by

any simulation is an estimate. It is only natural to want

the best possible estimate of each parameter. Variance

reduction offers the possibility of increasing the power of

this simulation software. Whether or not the common

techniques of variance reduction can tighten the confidence

intervals generated by this software without biasing the

estimates of the output distribution's spread is not clear

to the author. Due to time constraints sufficient research

and experimentation was not performed in this area.

Since all source code has been documented and provided

herein, the software should not cease to develop. In

particular, the use of variance reduction could be studied

through experimentation. Several runs of a model using

various types of variance reduction, and none, could provide

adequate data for an analysis of variance describing the

effect of the different variance reduction techniques.

PARAMETRIC LCC ESTIMATION VALIDATION - Now that a

powerful and easy to use tool has been provided, the

validation of parametric cost modeling can be undertaken

much more swiftly. Essentially, a follow-on to researcher

could probe that actual value of the modeling methodology

without having to sweat the details of implementation.
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RANDOM DEVIATE GENERATION - It has been suggested that

triangular distributions can be used in place of beta

distributions with little loss in accuracy. If this is the

case, then a great deal of time may be saved by replacing

the acceptance/rejection generators used for beta deviates.
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APPENDIX A: INTERACTIVE LIFE CYCLE COST FORECASTING TOOL

USERS' MANUAL

APPENDIX OVERVIEW

The purpose of this users' guide is to assist with the

actual keyboard entries necessary to use the software. The

three sections of this manual do no contain sufficient

information to use the software properly. Theory,

methodology, and assumptions should be reviewed in the

preceding chapters before the software is used.

The fist section deals with the user environment; the

menu system and the entry conventions required by the

language. The second section is a listing and description

of the functions available. Provided in the third section

is a numerical example with a keystroke by keystroke

tutorial.

THE USER ENVIRONMENT

RESPONDING TO PROMPTS - There are certain conventions

that must be observed when using this software, most of them

deal with data entry. Following is a list of the most

commonly violated conventions.
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REAL NUMBERS - real numbers (eg. 2321.234 or 0.345)

must be entered with at least one digit left of the decimal

and no commas. Reals less than one may not be entered

without a leading 0. For example, .5 is not allowed, nor

are fractions such as 1/2; 0.5 is the only way to enter the

value. The value 10,567 may only be entered as 10567 or

10567.00 or 1.0567E4. -0.03329 can only be entered as such

or as -3.329E-2. Notice that scientific notation is

allowed, as used in the preceding examples.

INTEGERS - integers must be entered much like reals

except that decimals and digits left of them are not

allowed. Like with reals, commas are not allowed. For

integers scientific notation is not allowed.

FILE NAMES - When the user is prompted for a

filename, a string of up to eight characters may be used.

These characters may be letters, numbers or symbols. No

extension is required or allowed. Extensions are assigned

automatically depending on the file type. Data set files are

give .SET and the LCC system files are given the .STM

extension. Following each file name prompt will be a

default name. To accept the default name simply press CR.

EXCEPTIONS - The above rule concerning file

extensions does not apply when the user is prompted for the
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file to read in the READ ASCII option. Nor does it apply

when the user is prompted for the filename to write in the

WRITE ASCII option. These filenames should be given the

appropriate extensions since they apply to ASCII files, not

data set file used by this software. The data set files

will still retain their .SET extensions.

THE SCREEN PRINTING PROMPT - In some of the

routines, the user has the option of getting a printout of

the graphics that will appear on the screen (FREQUENCY

HISTOGRAM, TIME SERIES PLOT, MOMENTS, XY PLOTS). Simply

answering yes to the prompt will not ensure that a hardcopy

of the screen will be produced. This option works only if a

screen dump utility has been installed.

With some systems the DOS command GRAPHICS is

sufficient (this DOS feature does not seem to work for all

computer-monitor-printer combinations). Some printer

manufacturers provide custom screen dump routines for their

printers. Another possibility is using a public domain dump

utility such as EGADMP that is provided with the CHART

package.

Once one of these utilities has been installed,

graphics may be printed by requesting a dump from the

routine, or simply pressing SHIFT and PRTSCR simultaneously
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while the graphics are on the screen. The same action will

dump a text screen to the printer. If lines and boxes do

not appear on the hard copy as they do on the text screen,

exit the program and issue the DOS command GRAFTABL. This

enables DOS to send the extended ASCII characters that

define lines and corners to the printer. Some printers

require that the IBM mode be activated to print these

symbols. Check your printer manual.

MEWJ OPERATION - This sub-section deals with the

specific operation of the menus. This is a custom, pop-up

menu system written by the author in Turbo Pascal 4.0.

Figure 9 is a black and white reproduction of the main menu.

This menu offers six choices; the data menu, the statistics

menu, the T-testing menu, the Files menu, the Random

deviates menu, and setting a new seed for the random number

generators.

A menu choice is selected by pressing the key

corresponding to the first letter of the choice. Note that

all the first letters are in bold type to remind you of this

selection method. To select the statistics menu press the S

key.

Another way to select a menu item is to use the arrow

keys to highlight the desired item and press the carriage

return (or enter) key. Notice that the Data choice is

underlined in Figure 9. This indicates that this item would
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be highlighted in a different color on the computer screen.

Pushing the down arrow once would cause the Data item to

return to normal colors and the Statistics item to become

highlighted. This is much easier to see with the software

actually running on the color screen.

If a mouse is installed with cursor key emulation, the

mouse may be used rather than the cursor keys. One of the

mouse buttons must emulate the carriage return key for

actually selecting one of the menu items. A mouse driver is

provided with the package (for the Genius family of serial

mice).

The QUIT option on the main menu is replace by a BACKUP

option on each subordinate menu. The BACKUP option takes

you back up one level to the previous menu. For example,

selecting the BACKUP choice from the data menu will make the

program exit the data menu and return to the main menu.
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GENERIC MODEL BUILDER -- by Dave Sumner

MAIN MENU

Data
Statistics
T-testing
Files
New seed
Random deviates

Quit

Figure 9

MENU LAYOUT - Figure 10 shows the layout of the menus.

This will make it easier to find a function without roaming

through the entire menu system. Unlike some comDercial

packages that claim to enable their users (pun intended),

these routines are laid out in logical groupings.

Some menu choices call another menu, while others

perform functions. The thick boxes with capital captions in

Figure 10 represent menus while the thin boxes with lower

case captions are procedures. For example, the DEFINE

option on the DATA menu is actually a subordinate menu

offering several choices, while the ENTER option is simply a

keyboard data entry procedure.
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Figure 10 Menu layout for Model Builder.
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AVAILABLE FUNCTIONS

DATA MENU - The data menu handles the 'administrative'

duties such as data entry, correction, combination, and

viewing. One mathematical routine, averaging, is offered.

ENTER - Allows for data entry from the keyboard.

Saves the data set to a .SET file for use with the

statistical functions. See READ ASCII under the file menu.

After selecting this item a work window will be opened and

the user will be prompted for a file name under which to

store the new data set. If the file name entered already

appears on disk, the user will be notified and asked if he

wishes to proceed (overwrite). Answering yes will not

overwrite the file yet. Enter one data value at a time,

pressing the carriage return (CR) after each value. After

typing in all the values, enter a "q" at the next prompt.

The user will get a chance to change the name of the new

data set, or overwrite the old data set if a data set with

the same name already exists.

VIEW - This option writes the data values to the

screen. It will scroll without pausing if there are more

values than space on the screen. The <control S> keystroke

can be used to stop the scrolling, but a better idea is to

write the data to an ASCII file (see FILE menu) and view it

with your favorite editor.

MODIFY - Allows the user to change any data point in

a set providing the user knows the number of the point that
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needs to be changed. Not very useful for large data secs.

It is easier to write the data to an ASCII file, edit with

your own editor, then read the ASCII file back in (see READ

ASCII and WRITE ASCII at the FILE menu).

COMBINE - Prompts the user for two data set names.

Reads the sets from disk, concatenates the second file onto

the end of the first and saves the new data set to disk.

AVERAGE - The only mathematical routine on the DATA

menu. Will prompt the user for a data set name. After

reading the set from disk the routine will ask for another

data set name. The values of the two sets will be averaged,

ie. the mean of the first value of each set, then the mean

of the second value from each set. The routine will

continue to prompt the user until the user enters "q" to

indicate that no more files should be averaged. This is

useful for averaging the observations between simulations

runs wiLhout. averaging within the runs, for tasks such as

beginning of steady state identification.

DEFINE SYSTEM - This item calls another menu, the

LCC system definition menu. This is where cost simulation

begins. Here a system is defined, with variables and CER's,

so a Monte Carlo simulation can be run to forecast the cost

distribution of the system in question.

VARIABLES - This item allows the user to define

the single variable cost components. The user will be

prompted for a filename. If the file already exists, the
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"-- File read --" message will indicate that the user is

updating a file that already exists. If the name is new and

unique, the "-- New file --" message will indicate so. Now

enter the number of single variable cost components for this

system. For each variable enter the variable type, an

integer from Figure 11, along with the appropriate

parameters as they are prompted for. Be sure to know the

NOCOST, PI, CON, and PO values before sitting down to define

the variables.

CER'S - Prompts for information defining CER's.

File name prompt and message are exactly like above. EnteL

the number of CER's, and the number of the CER to be defined

now (each CER must be defined with a separate pass through

this option). As the prompts suggest, enter all the

information associated with the CER. First the number of

input variables for the CER. Next define each variable and

its power transformation. If no transformation is desired

enter "1.0".

After the input variables are defined, enter the

estimated P parameters. Next enter the covariances, paying

careful attention to which covariance the routine is asking

for (eg. cov[1,1]=var[p], cov[1,2]=cov[, F,]). All that

remains is to enter the MSE from the regression used to

determine the CER.

As noted above this routine must be called three times

to define three CER's. It is a good idea to save the file
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Skewed left Symmetric Skewed right

High 0 1.5 a -1.35 0(= 0.5
Variance : 0.5 1.5

Type I Type 2 Type 3

0( .0 OX 2.75 O = 1.0

10( 3.0

Medium
Variance

Type 4 Type 5 TUpe 6

4.5 4.0 0L X 1. 5

1.5 4.5

Low
Variance

Type 7 Type 8 Type 9

Type 0 : constant. no variance.

Type 10 : uniform distribution. High and low user defined.

Type I = Normal distribution. Mean and var user defined.

Figure 11 Available random number distributions
(modified from Dienemann:14)
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each time a CER is added, just in case.

RATE - Prompts the user for the interest rate

to use for the present values. This interest rate should be

entered as an Annual Percentage Rate (APR). For example if

the current interest rate is 10% annually, enter 10.0. If

no interest rate is desired enter 0.0. There must be a

value for interest rate.

SAVE - Saves the information entered to a

system definition file with a .STM extension for use with

the Monte Carlo simulation module. It is prudent to save

the system file between each phase of definition (variables,

CER's, and interest rate).

STATISTICS MENU - This is the section of the program

that does most of the actual work. Nearly all the numerical

processing routines are handled here.

MOMENTS - Prompts user for a data set name.

Calculates the mean, median, variance, standard deviation,

low, hi, and number of data points for the set.

Additionally a I axis plot of the data is created to

facilitate identification of outliers, or clusters.

Figure 12 shows the display generated by this routine.

The two tick marks near the center of the number line are

the mean and the median (color coded with the words in the

table no the actual screen). Note that the data points are

lined up along a number line. Note also that if more than
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I II I

L0 HI

File rorna] Nean 0.00516
Samples = 500 Pedian = -0.02558
Lo -2.04136 Uariance 0.98128
Hi 2.79131 S. Dei z 0.99060

Jackknife statistics:

Z Mean 0.98128 Z S. 0ev 1.33552

J) Jackknife Statistics H) Back to Meu

Figure 12 Example of MOMENTS output.

one data point has the same value, then all the data points

(dots) are stack vertically at the position on the number

line associated with that value. This can give the analyst

some idea of the spread, or distribution of the data, but

the frequency histogram is more suited for this purpose.

The Jackknife statistics given are an unbiased estimate

of the population variance (Z mean) and the standard error

of that estimator (Z std dev). These figures are used to

draw a symmetric confidence interval on the population

variance, in the same way the sample mean and sample

standard deviation are used to draw a CI for the population
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mean. The jackknife statistics are calculated only at the

user's request (by selecting "J" while viewing the plot).

FREOUENCY HISTOGRAM - After prompting the user for a

data set name, this routine will ask a series of questions.

listed below are the options corresponding to the questions.

1) Printout - Answer by selecting "y" or "n". This

forces a screen dump, making a hardcopy of the graph. See

the conventions section for more information.

2) Number of classes - Answer by entering an integer

between 5 and 20, inclusive. Sets the number of classes, or

ranges, and the number of bars on the graph.

3) Automatic classing - Answer by selecting "y" or "n".

If "y" is chosen the range of data will be separated into N

equal width ranges, N being the chosen number of classes.

Otherwise, the user will be prompted for the upper limit for

each class. This is useful for viewing two distributions

under the class structure.

Figure 13 offers a sample histogram with nine classes.

The number of classes will vary with number of samples and

type of data, but nine is usually a good starting place.

TIME PLOT - After prompting user for a data set

name, this routine will offer the option of using a moving

average. If the user enters "y", he will then be prompted

for any odd integer, specifying the size of the moving

average window. This will result in the plotting of the

movigg average points, rather than the actual data. This
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-1.58966 -0133795 0.91375 2.16545

CLI S BOUHDAIES

Figure 13 Example of a histogram routine output.

option is good for checking the data for serial correlation.

This is not useful for the output of this model building

program.

Figure 14 shows an example of a time series data plot.

Note that the text displays the size of the moving average

window (0 if movinC average is not used). The line through

the data represents the mean (color coded to the word mean

and the number on the actual screen). Only the first 500

data points will be plotted.

XLOT - Provides an X vs Y plot of two data sets.

The user is prompted for two data set names. One axis is

scaled to one data set, the other axis is scaled to the
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Mean 0.50373
Nindow = 0*

Figure 14 Time series option output.

other data set. The data points are plotted as pairs such

as (dataA[1],dataB[1]), (dataA[2],dataB[2]), and so on. The

means of the two data sets are drawn as lines through the

appropriate axis (these are color coded with the file names

on the screen). This option is useful for identifying

correlation between two data sets. A discernable pattern.

suggests that there may be some dependence or relationship

between the two variables. Figure 15 shows a graph made by

the XYplot option.

OUANTILE ESTIMATION - After the user is prompted for

the data set name, the quantile estimates will be displayed

on the screen. Point estimates and 90% confidence intervals
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will be provided for 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

90%, 25%, and 75%.

NON-PARAMETRIC PROBABILITY - This routine will

prompt the user for a filename, like the QUANTILE routine.

Then the routine will prompt for a reference value. The

File betas File uniform
"em' 0.24291 Mean 0.'0373
Uar 2.642E-0002 Uar 8.083E-0002

Figure 15 Example of an XY plot.
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routine will display the probability that the next value

drawn from the data set will be less than the reference

value. A 90% confidence interval is provided.

T-TESTING MENU - This menu offers the three T-tests

described in Chapter III. For more infoxmation concerning

the assumptions asscciated with each test, see Chapter III.

T-TEST 1 - The user will be asked for the names of

the two data sets to compare. Next the user will be

prompted for the F-test a value. After the F-test is

performed with failure to reject, the user will be prompted

for the a value for the T-test. The results will be

displayed.

T-TESTS 2&3 - The user will be asked for the names

of the two data sets to compare. Next the user will be

prompted for the T-test a value. The results will be

displayed.

FILES MENU - This menu handles importing and exporting

ASCII text files and checking the contents of the current

disk drive.

READ ASCII - Reads a single column of textual

numbers into a data set file. Multiple columns and

nonnumeric characters are not allowed. The user is prompted

for the name of the ASCII file to read (include the

66



extension when answering this prompt) and then the name

under which to store the data set.

WRITE ASCII - Writes a single column of textual

numbers into an ASCII file. The user is prompted for the

name of the data set file holding the information and then

the name of the ASCII file to write (include the extension

when answering this prompt).

SET DIRECTORY - Provides a list of the files on the

current disk drive that have the .SET extension.

DISK DIRECTORY - Provides a list of the files on the

current disk drive according to the file specification

entered by the user. For example, to see all the files that

have the .DAT extension, enter *.DAT at the file

specification prompt.

RANDOM DEVIATES MENU - This menu handles the routines

that generate random deviates. The user may write deviates

to a file or use them to simulate Life Cycle Costs.

RANDOM DEVIATE FILES - The first three options,

Uniform Random, Normal Random, and Generate Betas prompt the

user for the appropriate distribution parameters, how many

deviates to generate, and the name of the .SET file in which

to save the deviates.

MULTI-NORMAL - Generates vectors of dependent normal

variates. First the user is prompted for the number of

variables in the dependent set, ten is the maximum allowed.
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Next the user is prompted for the mean of each variable.

After the means are entered, the user is prompted to enter

the covariances of the variables. The user is also asked

how many vectors to generate. Each set of samples is

written as a row vector to the file MULTNORM.DAT.

SIMULATE COSTS - This is the routine that generates

Monte Carlo samples of LCC's. The user will be prompted

for the name of the system (.STM) file in which the costs

are described. See DESCRIBE SYS under the DATA menu for

more information. The user will then be prompted for the

number of runs, 2500 is the maximum. Finally the user is

asked for a file name for the resulting cost estimates.
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TUTORIAL

This section of the users' manual is a walk through of

the software with a numerical example. A system will be

described, entered into the program, and its cost simulated.

Let it be clear that this example is grossly over

simplified, but it will serve to exercise all the routines

of the program. The statistical description procedures are

not walked through; only data organization, entry, and

simulation is covered here.

THE SYSTEM - John is starting a flying club. He needs

to estimate the cost of purchasing and operating a fleet of

6 small aircraft with a life expectancy of ten years. From

data about past purchases and operation of similar aircraft

John has developed a set of equations representing the costs

associated with this fleet of aircraft.

John will have two years of setup and aircraft

acquisition, after which the fleet of aircraft will be put

into service for ten years. So the entire process will

stretch out for twelve years. The current interest rate is

9.5%, and is expected to hold steady for at least twelve

years. Following are the equations and their explanations.

The first cost incurred is a setup fee, money needed up

front for maintenance equipment and facility renovation.

John knows how much this will cost as he has contracted this
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out, having already negotiated a package price of $32,000.

This cost is incurred in the first year:

C SETUP X I

where

X 1= 32,000

Next John must purchase the aircraft. The cost of the

aircraft fleet has been estimated by the following equation

(CER):

C AXRA = *- X 9?2

where

X i= personnel capacity of aircraft
X 2= thickness of aluminum skin

1= estimated at 5.2
2= estimated at 0.5

cov(p)= estimated at 1= 1.7, 2= 0.05, 1,2= 0.02
MSE = 1.2

John has decided that X I will be 4 people. The

aircraft manufacturer has notified John that the thickness

of the aluminum sheeting (X2) is usually uniformly

distributed between 0.25" and 0.37". Since the aircraft

must be purchased after the first year of setup, this cost

will be incurred in year 2.

The next cost is the maintenance of the aircraft. It

has been shown that the maintenance and operation cost for
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six aircraft of this type can be forecasted by the following

equation:

C M&C I X1 + 2 X2G2

where

X 1= flying hours per plane per year
X 2= average humidity over aircraft life

1= estimated at 1,380
2= estimated at 22,000

cov( )= estimated at 1= 205, 2= 1307, 1,2= 125.9
a2  = 0.5
MSE = 15,700

Having researched flying clubs in other areas of

similar size and demographic composition, John has estimated

the flying hours per aircraft per year to be beta

distributed between 1,000 and 1,500 hours, with a = 0.5 and

) = 1.5 (beta type 3, see figure 11). The local weather

archives reveal that the area's average relative humidity

over a ten year span is beta distributed between 0.5 and

0.8, with parameters a = 4.5 and P = 1.5 (beta type 7, see

figure 11). Since the aircraft will not fly for the first

two years, the maintenance and operation costs will be

incurred from year three through year twelve.

The last cost John has to worry about is a set of

replacement engines. The FAA has made a ruling that small

aircraft engines and their propeller speed reduction gears

must be replaced after each five years of duty. John has

negotiated with the local aircraft parts retailer and has

settled on a price scale for the replacement engines. The
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scale depends on the number of engines purchase. The more

you buy, the cheaper they are:

C I tN :NE = X, P , X 2 92

where

C 1EN:%Z = average cost per unit
X = number of engines purchased (lot size)
x = number reduction gears per engine
P = estimated at 0.95
P 2 = estimated at 0.3
cov(P) = estimated at 1= 0, 2= 0.05, 1,2= 0
MSE = 1,200

This is a learning curve CER. John will be buying 6

engines (X,) each having 4 reduction gears (X 2 ). Since

the original engines will be repiaced five years after start

of service, these new engines must be bought in year 7.

Note that C is the average cost per unit. The cost of this

cost component will be figured by mulitplying that average

cost per unit by the number of units to be purchaes, X1 .

SETTING UP SPENDING TIMELINES

Now that all the costs are broken out, the value of

NOCOST, PI, CON, and PO must be determined for each cost.

COST 1: SETUP - Figure 16 shows the spending timeline

for this cost. The setup will occur in year 1, so the bill

will be paid at the end of that year. Since this bill will

be paid in its entirety the first year, there are no periods

of NOCOST, PI or PO. There will simply be constant spending
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PI=PO=NOCOST 0
CON M I

CON]

0 1 2 3 4 5 6 7 6 9 10 11 12

Figure 16 '..pending timeline for Cost 1.

in year 1. So the value of CON is 1.

COST 2: AIRCRAFT PURCHASE - Figure 17 shows the

spending timeline for this cost. The purchase will occur in

year 2, so the bill will be paid at the end of that year.

NOCOS7 = I

CON= IPI =P3 = 0

0 1 2 3 4 5 6 7 6 9 10 11 12

Figure 17 Spendi'g timeline for Cost 2.

This is just like the case of setup above, except the lump

sum is paid in year two. Since no money is due in year 1,

the NOCOST period is 1 year. The entire cost will be paid

in the single year following the NOCOST period (year two) so

the CON period is 1 year long.

COST 3: MAINTENANCE AND OPERATION - Figure 18 shows

the spending timeline for this cost. The aircraft will
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begin to fly in year three. Since no money will be spent

N COST = 2 PI = P = 0
CON= 10

CON
II t I I I I I I I

0 1 2 3 4 5 6 "7 8 9 10 II 12
Figure 18 Spending timeline for Cost 3.

for M&O in years 1 and 2, the NOCOST period is 2 years. The

maintenance costs will be incurred evenly over the operating

life of the aircraft, years 3 through 12, or for 10 years.

So the CON period is 10 years. Again there are no PI and PO

periods.

COST 4: ADDITIONAL ENGINE PURCHASE - Figure 19 shows

the spending timeline for this cost. The purchase of all

the additional engines will occur in the fifth year of

NOCOST = 6
CON: 1

I I P:P 0' 0 I I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 19 Spending timeline for Cost 4.

aircraft operation, year 7. So the bill will be paid at the

end of that year. Since no money is due in years 1 through
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6, the NOCOST period is 6 years. The entire cost will be

paid in the single year following the NOCOST period (year

two) so once again the CON period is 1 year long.

Table 1 lists the values of NOCOST, PI, CON, and PO for

each of the costs described above:

Table 1

Cost NOCOST PI CON PO

SETUP 0 0 1 0

AIRCRAFT PURCHASE 1 0 1 0

MAINTENANCE & OPS 2 0 10 0

REPLACEMENT ENGINES 6 0 1 0

DATA ENTRY

To enter the data describing the system cost

components, start the program by typing its name, THESIS.

Select DATA from the opening menu by pressing D, or by using

the down arrow key to highlight the DATA option, and

pressing CR. Now select the DEFINE SYS option from the DATA

menu by pressing D. Now you are ready to begin entering

costs.

Begin by entering the onli single variable cost

component, setup costs. Remember that this cost was a
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constant. Select VARs by pressing V. When prompted for a

file name, enter JOHNFLY. Next you are prompted for the

number of variables. Respond to the prompt by entering the

number 1, because there is only 1 single variable cost

component (the others are CER's).

A new screen appears and you are prompted for the type

of the variable. Since our variable is a constant, enter a

0 (see Figure 11). When prompted for the constant value,

enter 32000 (no commas). Next you are prompted for NOCOST,

PI, CON, and PO in that order. Enter the values 0, 0, 1,

and 0 in that order, pressing CR after each (see Table 1).

Since there are no more single variable cost components, the

program returns to the DEFINE SYS menu.

To save the information you have entered so far, press

the S key to select SAVE. You are again prompted for a file

name, but this time the name JOHNFLY is offered in

parentheses as the default. Since JOHNFLY is the name you

want, simply press the CR to accept it.

Next you need to enter the CER's. Select CER from the

menu by pressing C. Again you are prompted for a file name,

press CR to accept the default. When prompted for the

number of CER's, enter the total, 3. Next enter the number

of the CER you want to describe. Start with 1, which will

be the MAINTENANCE AND OPERATIONS CER.

In response to the next prompt, enter the number of

explanatory variables (number of P parameters), 2. Next is
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the sequence of time parameter prompts for this CER. Enter

the NOCOST, PI, CON, and PO values as they are asked for,

just like in the single variable case. Next the screen

clears and you are prompted for the type of the CER; regular

(linear), natural logarithm, or learning curve. Select

regular by pressing R.

The next group of prompts pertains to the explanatory

variables of the CER. For each variable you are prompted

for the type, high, and low (or mean and variance for

normals) just like with the single variables discussed

above. Since X, is distributed beta (a=0.5,6=1.5) enter 3

for the type (see Figure 11). Next enter 1000 and 1500 as

the low and high values. Since no power transformation is

desired, enter 1.0 at the a prompt. For the next

explanatory variable, follow the same sequence, except enter

0.5 for a value since that power transformation is indicated

by the CER describing the maintenance costs.

After you have described the explanatory variables, you

will be prompted for the estimates of the P parameters.

Enter 1380 for the first 8 and 22000 for the second. Next

you are prompted for the covariances. Be careful to note

which covariance you are being prompted for. First the

cov[1,1] appears. Enter 205 since it is the variance of

fl. Next the cov[1,2] prompt appears. Enter 125.7.

Finally the cov[2,2] prompt appears, so enter 1307, the
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variance of P2. The last prompt is for the MSE. Enter

15700.

To enter the next two CER's follow the same steps.

When entering the aircraft cost CER be sure to select

natural logarithm as the CER type. Describe the X variables

as the beta distributed variables they are. The program

will handle the logarithms and exponentiation. Be sure to

enter 1.0 for the transformation a's.

For the replacement engines CER, select learning curve

as the CER type. Be sure X,, the first explanatory

variable, is the number of units to purchase. The CER

outcome, C ENINE must be multiplied by X, to get the total

cost of the entire lot of engines, since the CER describes

the average cost per unit (engine).

The last step in data entry is to enter the current

interest rate. Select RATE from the DEFINE SYS menu. Enter

the APR, 9.5. Now save the system file one last time by

pressing S and and backup to the main menu using the B key.

RUNNING THE MONTE CARLO SIMULATION

To run the simulation, proceed to the RANDOM DEVIATES

menu by selecting R and the main menu. Now select S to

simulate costs. When prompted for the file name containing

the system information (CER's, rate, etc.) enter JOHNFLY.

Next you are prompted for the number of runs to perform, or

the number of estimates to make. Enter any integer between
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1 and 2500. You must also enter the name of the data set in

which to store the cost estimates. You may choose any name,

but it is best to keep the same name as the .STM file

containing the CER information. Enter JOHNFLY. This will

not erase the system information file.

SEEDS

The seed is set to a default of 12345 when the program

is initiated. If you run an LCC simulation today with the

default seed, and simulate the same system next week with

the defalut seed, the output numbers will be exactly the

same. You may change the seed upon initiating the program

to give different random deviates. Changing the seed is not

a dangerous procedure. The seed may be set to any integer

between 1 and 3200Q.

OUTPUT ANALYSIS

You are now ready to use the statistical description

routines provided by the program. For information

concerning the significance of each routine see Chapter III.

For specific program operation information see the functions

section of this appendix.
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APPENDIX B: RANDOM DEVIATE GENERATOR OUTPUT

OVERVIEW

The purpose of this appendix is to demonstrate the

capabilities of the deviate generators used in the model

building program. Checks of mean, variance, and serial

autocorrelation are performed on each generator. There are

more powerful tests for specific distributions'available but

they have not been performed. The purpose of this appendix

is not to prove the theoretical accuracy of the random

deviate sampling procedures, but to demonstrate that they

have been coded according to the references provided, and

that they have no major flaws. For more rigorous validation

of the sampling procedures see the appropriate references.

The following sample statistics are provided via

STATISTMX II. Additional statistics and graphs are provided

from the model builder statistical functions, helping to

validate by comparison those statistical functions that have

been repeated).

80



UNIFORM(O,1)

Source: Press.

Type:

500 element test set: Observed

mean 0.5037 0.5000

var 0.0808 0.0833

low 0.0004 0.0000

high 0.9970 1.0000

Figures 20 and 21 are graphical depictions of the

output deviates, created by the model builder program.

Figure 18 shows the first 22 serial autocorrelations for the

500 element test set, as calculated by STATISTIX II.
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I I

LO HI

File = un ifor" Mean 0.50373

Samiples 500 Ned i an 0.50300

Lo 0.00042 Uariance 0.08083

Hi 0.99703 S. Dew 0.28431

Jackknife statistics:

Z Mean 0.08083 Z S. Dew z 0.07526

J) Jackknife Statistics M) Back to Plem

Figure 21 Uniform moments.
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AUTOCORRELATION PLOT FOR UNIFORM

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
LAG CORR.

1 -0.021 >** <
2 0.022 > **<

3 -0.017 > <
4 0.063 > **<
5 -0.028 >** <
6 0.043 > **<

7 0.005 > <
8, -0.087 >** <
9 0.051 > **<

10 0.051 > **<

11 0.084 > **<

12 0.006 > <
13 0.021 > **<

14 0.035 > **<

15 0.008 > <
16 -0.038 >** <
17 -0.011 > <
18 -0.026 >** <
19 -0.089 >** <

20 0.096 > **>
21 -0.014 > <
22 0.008 > <
23 0.004 > *<

24 -0.048 >** <

25 -0.091 <

MEAN OF THE SERIES 4.883E-01
STD. DEV. OF SERIES 2.924E-01
NUMBER OF CASES 500

Figure 22

84



NOR10, 1)A

Source: Ross.

Type:

500 element test set: Observed Ex~ected

mean 0.0052 0.0000

var 0.9820 1.0000

Figures 23 and 24 are graphical depictions of the

output deviates, created by the model builder program.

Figure 25 shows the first 25 serial autocorrelations for the

500 element test set, as calculated by STATISTM II.

--8 ------------------.... ..... .. . . .~.. ... .-------- ---------

F

E ..5-------.....

E

C 6 2 -- -- --- ----------- -- ----

-2.21551 -0.96381 0.29790 1.53960 2.7
-1.58966 -0.33795 0.91375 2.16545

Figure 23 Normal histogram.
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I II

LO HI

File - normal a = 0.00516

Samples = 500 hidian -0.02558

Lo -2.34136 Uariance 0.9el28

Hi 2.79131 1. Deu 0.99060

Jackknife statistics:

Z Mean 0.98128 Z Z. Dev 1.33552

3)' Jackknife Statistics fl) Back to Menu

Figure 24 Normal moments.
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AUTOCORRELATION PLOT FOR NORMAL

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
LAG CORR.

1 -0.083 >** <
2 0.022 > **<
3 0.090 > **>

4 0.003 > * <
5 -0.011 > * <
6 0.034 > **<
7 -0.020 >** <
8 0.066 > **<
9 -0.023 >** <

10 -0.031 <
11 0.028 > **<

12 0.015 > <
13 -0.038 >** <

14 0.025 > **<

15 0.074 > **<

16 -0.034 >** <
17 0.005 > <
18 -0.013 > <
19 -0.015 > <
20 -0.019 > <
21 0.006 > <
22 -0.069 >** <
23 0.004 > <
24 -0.059 >** <

25 0.008 > <

MEAN OF THE SERIES 5.160E-03
STD. DEV. OF SERIES 0.990
NUMBER OF CASES 500

Figure 25
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BETA(q -1.5,=4.5) ON (0,1) INTERVAL

Source: Ross, Fishman.

Type: Acceptance-Rejection.

500 element test set: Observed E4pected

mean 0.2447 0.25C0

var 0.0258 0.0268

low 0.0048 0.0000

high 0.7109 1.0000

Figures 26 and 27 are graphical depictions of the

output deviates, created by the model builder program.

Figure 28 shows the first 25 serial autodorrelations for the

500 element test set, as calculated by STATISTIX II. Note

that the 20' autocorrelation appears significant.

Remembering the way risk builds when more than one

confidence interval is considered simultaneously we could

calculate that the probability of at least one

autocorrelation being out of its 90% CI when no actual

autocorrelations exist is over 0.95!

____=88
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Figure 26 Beta histogram.
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I II ii

LO HI

File betas Mean 0.24291
Samples - 500 Median 0.21280

Lo 0.00152 Uariance - 0.02642
Hi 0.76419 S. Dev 0.16254

Jackknife statistics:

Z Mean 0.02642 Z S. 0ev 0,03701

J) Jackknife Statistics PI) Back to Menu

Figure 27 Beta moments.
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AUTOCORRELATION PLOT FOR BETA

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
LAG CORR.

1 0.053 > **<
2 -0.022 >** <
3 -0.018 > <
4 -0.028 >** <

5 0.050 > **<

6 0.028 > **<
7 0.052 > **<

8 -0.088 <
9 -0.064 >** <

10 0.081 > **<

11 -0.018 > * <
12 -0.012 > * <
13 0.063 > **<

14 0.001 > <
15 0.039 > **<

16 0.007 > <
17 0.026 > **<
18 0.023 > **<

19 0.018 > <
20 0.102 > **>*
21 -0.025 >** <

22 -0.036 >** <

23 -0.067 <
24 -0.004 > <
25 0.056 > **<

MEAN OF THE SERIES 2.447E-01
STD. DEV. OF SERIES 1.605E-01
NUMBER OF CASES 500

Figure 28
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MILTIVARIATE NORMAL

Source: IMSL User Guide

Type:

500 element test set: Observed Expected

mean xl 4.985 5.000
x2 10.09 10.00
x3 15.03 15.00

Covariances Observed Expected

2.957 0.578 1.994 3.0 1.0 2.0
0.578 8.338 2.413 1.0 9.0 3.0
1.994 2.413 4.912 2.0 3.0 5.0
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APPENOIX C: TURBO PASCAL 4.0 SOURCE COOE

$SS-i IStack chec 'ng on}
J$N.1 (nLeric coprocessor yes}
JS- 64OZ0,655 363)

PR3GRA" thes~s;

Uses

Cos,
PR',\TER,

Gra;),
davener-., c( crgina' menring unit written by me ")
davestat; C' origina, unit written by me,houses many Statistical routines *)

(" Note: the type and variable declarations, along with many o1 the

statistical and file handling routines used in this program ')
are in the unit CAVESTAT. Some other routines along with all *)
the homemade scrolling men.- control routines are in the 0AVEMENU ')
unit. Ssince those units have been included with the USES *3

(" statemert, the program acts as if they were listed here. *3

procedure ri. tinormal(var betas: doubvect; chol : tensq);
(" Ts is an orig~nal procedure .ritter for mn tinormal sampling using the')
" cmoles y sqware root o

f 
the covariance matrix. See IMSL for algorithm. *)

(- ris rot'ne is usec for generating dependert betas for cers evaluation.,)

var
"~x :integer;
tem '2, tem. :.do.fle;

beg'r
n:=trunc(betas[C]); (I This is the njznber of betas in this CER ')
mat2.matr'x: c-ol; (' PUt the cnolesky square root of the coy matrix in MAT2 *)
mat2.ro.size:=n; (" These next 4 lines setup the sizes of working matrices *)
mat2. co',size:=n;
matl.colsize:=n;
matI.-owsize:=1;
(* Ora. the independent normals and put them in a vector *3
for x:- I to n do begin

tem :' ran3Cseedl;

termp2 :2 ran3kseed);
rmat' ma*tri xjx] sqrt k- 2*I1n kte!p) )'*sin (2"pi *temp2);

end;
(* Postt.liply independent normals by cholesKy square root of the covariance matrix '3
MULTmat;
(0 No. add in the means to complete the dependent multinormal samples*)
for x:zi to n do

betas[x] :- fwt3.matrix4l,x] + betas.s3;
end;

PROCEDURE MKANUAL(SETD:|NF0;VAR NUMARRAY: .Cl;NUMD:INTEGER;VAR BOUNDARIES:twenvect);
(" this allows the user to enter his oWr class boundaries for the *)
C' frequency histogram routine. *3
VAR X,V :INTEGER;

MIN,wIDTH : double;
go :boolean;
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( original *
BEGIN

FOR X:- 1 TO NUMG 00
BEG IN
WRITE('Upper bou~ndary for class ',X,': ');doufleread(9OUNDARIES[X]);

writein;
END;

for x:=1 to 2CZ do (* 'ntalize the observed frequency vector 1)

nmarray>]:=j

for x-1l to nxn~g dc beg-nr (* No. count the observed frequencies, on class at a time *
go:=tr.e; (~The data will be sorted before it *
for y:= numarray~o] to setg.size do C'is sent to this routine, so using *

if a~3-Dudais~1 and go then C'the go flag allows me to make only *
nararray':r.'!ar-ayL',j.1 (' complete pass through the data to*)

else go: ='alse; C'count class frequencies. '
ninarray'L]=nZ ry ~ lnj~rayxl

ENO;

(* or4igna'
PR:ED.jRE' autoClasS(SETG:INFO; VAR NUMARRAV:VECT;NUMG:INTEGER; VAR BOUNCARIES:twenvect);
Cthis a.tomatca'ly sets the calss boundaries for the histogram '
('it div,-Ces tne data rarge into equal calss widths '
~The data is sorted belore it comes to this routine, like the routine above. '

VAR x,V :IN7EGZR;
M:NWIDH :double;

c Lrrf',e q :twenvect;
stf, :filename;
gc :bIoclear;

MN SE-G.OATA1;
W7H (S[TG.0C TArS[TS. SIZE] - MIN)/NUMG;

FOR X 1 TO (NUMG Do
9OLUt4ARES[Xj: MIN-W;3TH*X;

for x:=1 to 2C do
numarray~x]:=

n-ra r r a y rI :=1 ;

for x:=1 to nang do beg'.r (* counting class frequencies just like procedure above '
go:-true;
for y:- njnarray~oJ to setg.size do
if (setg.dataryic.boundaries~x)) and go then
num~array[x):-numlarrayxj.I

else go:-false;
njiparray[C] zni.narray,'C}.narray(xj;

end;
EN.';

t' deC.~e
PROCEDURE ANNXAIS(XORI,YORI,XLEN,NUMX:INTEGER;XTEXTARR:ANNARRAYTVPE);
(* annotates the x axis for graphs 1)
VAR yl,TEXTLENGTH,real~g,J,NUM0ODO: INTEGER;

SPACING :douflle;
BEG IN

SPACING:- XLEN/NUMX;
NUKTOOO :- NUMX +1;
FOR J:. 1 TO NUKTOOC 0O

BEGIN
TEXTLENGTH :- LENGTHCXTEXTARR(fl);
REALXG :- round(XOR:*(J.I3'CSPACING3-(B'textlength/2)l;
yI:-?BC;
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if odd~j) then y! : 290;
oautt extxy (r calxg;.y xt e.. art L3j);

END;
XTEXTARR[O]:- 'CLASS 90 NCARJES';

(* deCQ.e
PROCECR1 ANNVA)k:SCXOR:.YoRIYLEN,NuMY:IN7EGER;YTEXIARR:ANNARRAYTYPE);
(* annotates the y axis for grapms 1)

VAR T-EA ENO ,X-X7TVEX, 3, NUMTICOC : 1N7EER;
SPRAC:.RX,REA~vG O~e

BEG11
SPAZINC:= YLEN,OY;
NU"'3C := N "; -*
PC; 3: C N ?1TCCC 00

BECI
TEXN3- :aLENG VkTEXARRI3';

REA.O: XC^R, - (IEXLECH *2.0) -15;
REALYS :YOR:-SPACN,(J-1)-4;
outtextxylrow.ndreag),roiundkrealyg),ytextarrj3i);

EN.';
VTEXTARR70]:z'rREQUENCY'
T717TF.H :- LENG7HY7EXTARR[C]);
FO *j:= ', T TEXTLEN TH 0O

o.ttextxyC3u,2C j",Cytextarr[CljJ4,);

(I de,^e 1)
PRCC CR-- AXTLA ,VAR GEARA~ATP;CTO~O VtHVtd.e

REALP.ORMA:2CC0EAN.):
w'.rites the text at the x ax.is r)

VAR IN7ER'VAL,RAt-AVA:do .fle;
ININA, : INTEGER;

BE 3:

INTERVA, := HIVAL - LOWVAL)/NUmG;
IF REAJORMA' THErN

FOR J:- 1 TC NU;MG CC

REALVAL := LOWVAL +j *INTERVAL;
STR(REALVAL:12:5,GIEXTARR'L3.1J)

ENO
ELSE

FOR j:= 1 IC NUM'. 00
BEG0 N

INIVA. :-TRUNC(C.5CLOWVAL *TR'JNC(INTERVAL)'3));
STR( INTVAL3,GIEXARRJ.':);

EN'.;

(0 deQue ~
PROCEDURE MANdXAXIS(VAR GTEXTARR:ANNARRAVTYPE;NUMG: INIEGER;BOUNOARIES:tvenvect;
(0 writes the x axis text when manual class bowndaries are used '

REILFORMAT:BOOLEAN);
VAR INTERVA,REAL.VAL:do61fle;

INWAL,j :INTEGER;
BEGIN

IF REALFORMAT THEN
FOR 3:. I TO NUMG DO

BEGIN
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STRC9OUNDARIES2> :1:5,GTEXTAR'>-!')
END

ELSE
FOO J:- 1 TO NUMZ NC

BEG IN
INTVAL :-TRNB.^NARESJJ)
STR(INTVAL:3,G'ErTARR'LD.1];

END;
END;

(* ot<..Z 1)

PRCEjR-' DCc:SXRYCR:LEN,NMX:INTEGER);

VAR X~, :IN'EGER;
TEmP do.zeL;

BE 3

L:N~.:xDRk., ZR:, ZN*j"A% YRI

E,.

(* deZ .e
PR3CZ^D.;Z DC'AX:SCR,YCR:,YrEN.NU'",XEN:l4TEGER;
(* >.s*t i dCCaXs exce;t fcv the y aA.'s
VA; ',-',K :I%'7C7R;

FOR :TO N,;?" CDC
BED>

TE :r, r(LF/.P7

proced..re gra~x;
(I sets ui; t~re compwte- for the FSA 641<49O color mode *
var
Gr~i'~erp .~drocd :integer; J The Graphics device driver

SIN:TIALIZE TH~E E-A 4 COLOR GRAPHICS SCREEN 603h X 350v )

gra~phdri ver: .4;
graphunode: = 1;
InitGraph(graphdier,rao~'iode,. ); j activate graphics

ErrorCode :- raphRes ?t; error?
if ErrorCode 4>grOk thern begir

Wr'teln('Craph-cs e'-or: ',Graphrror1sg(ErrorCodeD;

H.al t(,);
end;

end;

(~highly modified deQje '
PROCELJURE HISTOGRAM;
(* draos a frequjency histogram based on a data set ~
VAR NUMARRAY :VECT;

BOUNDARIES :twenvect;
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GTEXTARR :ANNARR.AVWPE;

NLJMXNUMYULX,UVS,X,A2,MAX:-ASS :IN'7EGSR;

LOXHX,Lv.I,St;,X,SZAE-,9AR- ','H :ao..b'e;
AEPLvRFPLY2,AUT,PV'J:HR
REALFORMA-X,REALr0RwA- :BCZEJAN;
setg :ro*-

:poi r ter;

re.(set;

1,ro* EX:S-set-.ra~~e2 o" (setg.S!ZF<2, THE% beg4-
re ease ;);

MAX:-ASS: 'C;
.- * te'-;
re:)eA

w;'1^zyc-. .a-t a ;"to.t? : 2;PRVN7: EA3KE;.rItePr' ',pryr,*,;

* 'ease ia -

if s a T-4E? a tccasslsetg- NUMARRA,NUMX,2C NCAR2:S)

-,S, Ine -

Please w~ait
e'd;

1i' NARC(AViX :x MAX-ASS 'HEN MAXC-ASS NL ARA, A';
XC;: := I e't edge o' grao" 1)
V; :z259; to; edge o" g'iapr

YP :=2,^; l" erg:r cf y aA-s '

REA,:3RMAAX:= 7R E; (~says to show ar-s 'ate' nLi~erS as rea:s
REALPC~mPAY:. FASE; (Says to sho.. Y axis label rznbe~s as in~tegers *

(I in'tialze the gra;rics caid nod *)

SE~CRREC;(- these tmiee lines dra.w the , and y axes in ret '

xA-:sCC:,xEt,UwX;; (f draw x a-25 '

CDAXS,R:,vC R:,LENNMv,XLEN);(* draw y aAdS)

LCX:tsetg.ATAUj]; f* these two lines get Mi ant low va .jes, data 'S Sorted *

mIX: setg-.0ATA'Lsetg.S'ZE:

(* this next bloCk f-g~res class bc. dar-es, observed frer.C"cies, arc. writes the axis tex*,*

17 JPCASEAU'C)= Y 7k--, AJ;S7E(!,TETARR,N. X,LHXHXREAFORPA7X)

ELSE MANAAXS(GTEXTARq,.4X,9UNARIES,REA FrCRMA-X);
ANNXAS(ORI,YO,XE4,NX,''XARR)
AA1ISTEXT(GTEXTARR,N ;P-,C setg-.S1ZE,REALrORMA-V);
ANNYASXORI,VO,YL,N',GEXARR3;
SCALEY :- 2.O*YLEN/Se~g-.SIZE;
BARWIDTH :-XLEN/NUPMA;

(* now draw the bars for the histogram based on observed frequencies per class)

FOR j:. I TO Numx CCO SEC:N
C'this code calc Aates the prope, hieght for each *

D' ar of the histog~am and draws each bar in 3-dimersional form '

ULX :- XRI . TRUNC(BARWIDTH *(J-1));
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LV:- I-RuNC1,YOR! - NUMARRAv~2' , * "'"
LRX :-XORI . TRUN, BARC.')1;
bar3O(ULX.1,ULY,LRX-1.Y0RB,,TRLE);
(*BAR (ULX.O,ULy._RX-'1,VOR2; TO HAVE 2-3 RA-HE; THAN 3-0 '

END;

IF UPCASE(PRVNT)-'Y THEN PR'SC;
PAUSr: -RE AD K V;

re~ease~p);

(cal:.ae mea-, var,med- ar,and jac~ - f'g for a data set 1)
a. al-; - -a -c--zo-ta' p' ot fo- ire-t -fyi g o:LtIi ers)

SarC cmec. -rg t~e szreal of the daia
VAR P;R'. az :CHAR;

R, X XCR V^R: Xz X"'i rteger;

N~-,EO:~zx.':XXscAEMA~.,AR1~cl :dO.~ble;
S, 77 : r jNAE;

:word;
set; :Ifor

:po,.nter;

ne- setg;
set.4-. . '36 'C,78, 12;

~(not. EX:S-setg-.rar.e: or (set-.SI/zE 4= 2) THEN beg'r
releaseC'z;

WP- Dc yoart a pr rtcot? ');PRVN7 =REA3KEY;

wr .e .- Please wa-t -

MANVAR~setg-,MFA%~,VAR:A.C2);

LO^X :se g.'AALj
H~x :sej;.OATA~setg-.SZE]:
XOR 8C;
YOR; :1B

f h.x- IoA c ^, 0'. 1 the,. beg' r
.r-telr('No spread r the data, a
pa~se:=read.~ey;
re ease";")

XOZ^AE:-XLEN/)KHX-LCX);

(I find the meda, ')
1; 000 (setg'.S;ZZ) T.HE' MEDI]A" :=setg'.DAA-etg'.SjZE 1, 07'. 2?
ELSE BE N

mi -setg.SIZZ CIv 2*
MEDIAN :- (setg.OATA[M;'t - setg'.CA-..(?M 1:) 2.0

E NO;

(p DRAW THE NUMBER LINE 1)
grapmi x;
SETC DL DR(WH UE) ;
LINE(XORI,Y0RI,XDRl.XLEN,VDR;;
LINE (XCRI Y0RI,XDRIYCRI.1D(;
LINE(XCRI*-XL:7N, ORI,X0RI.XLPJ.,V0RI*ID);
DUTTEXTXVCXRI-1O,VCRI.2D. LC');
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OUTTEXTXV(XDRI+XLEN-1O,YDR.-2O, 'HI)

(* PLOT THE MEAN TICK MARK and the median tick mark ~
SE TCDL OR(CRE0);
LINE(ROUND((MEAN-LCX)*XSOALE).XORI ,YOR.-10,ROUNOCCNEAN-LOX)XSCALE).XORI ,VOR8);

setcolorl ightgreer);
LINE(ROUN0(CMedian-LOX)*XSCALE).XORI, YORIiO.ROUNDC(MEdian-LOX)*XSCALE).XORI,YORI);

(- NOW PLOT EACH OF THE DATA POINTS *

SETCCLORCVEOW;;
FOR I:z TO setg.SE DO be;'n
xl:-round'setg'.ATA i-LOX)YXS.AE)XORI;

iwi,'le p-.elco~or-yello. do te;'" (k IF THIS POINT IS ALREADY PLOTTED, '

y :y'-2; C'THEN GO UP T'WO DOTS TO INDICATE THAT '

v~ec~--e:)x!x~') MO RE THAN ONE POINT IS PLOTTED HERE 0)

end;

(I No. d'a. the tab.,ar data box at the Dottome of the screen *
SE7:C CP~wHkFE);
LINE _'5,2O5,45,320;;
LINE'_-,2C5,555,205;
LNE"5 555, 2C5, 555, 32C/;

LINE '.O5.32:,555,2C,;

CNo. COr~e-t a!7 the data :o strings and write the Strings '
o~ttextxyI'50,220,'File . .setg.NAME);

STR(setg-.S1ZE:6,STJ7); o,.ttextxy(5O,235,SaMI.Ples - '-STUjFF);

STR,' OA:1:5,st.",;O1LTEXTXV(5O,250,'Lo =+t')
STR(I~x12:5,s 'f-;;odttextxy(50,265.'Hi = tf)

STRCrmean:'.:5,s~f; CUTTEXTXV(300.22O, Mean *tfj

STR~m::A:.:2:5,S;F ,; OLTTEX7XY(C0,2J5, Median '+tf)

STRVARAE:2:5,S.Jcc); OU-TEXTXY(30O,250, 'Variance - 'STUFF);
STRISOR-(VARANO'E,:12:5,S~jT-); OU'TEXTXY'C30O,265, 'S. 0ev -= F)

CuTTEXTXY(5O,335, J) Jackkn~fe Statistics M) Back to Men.');

jac:r-eadkey;
IF UPCASE-kA,) j' THEN BEG:N
setco'o,',*rte-blink);

oiuttextxy(50, 285,'Jackkniie statistics:');
JACK ~setg , ME AN ,VARjANCE);
STRCmEA!.: ,2:5,STjFF); ou.tteAt~y(5O,3OO,'2 Mean -= tf)

stS-~a4ne:25st )otety3O3O'2 S. 0ev -'s~f)
pa~se:-=eadkey;

end;
IF UPOASEIPRYN')= V' THEN PRTSO;
restorecrt mode;
rel ease p;

END;

(* original *
PROCEDURE PLOTit;
(* this plots one data set against another, basically an A Y Plot '
VAR Stuff :fi lename;

tewpset,setg,seth :inioptr;
PAYNT :CHAR;
Y,J,YLEN,L,R,A,MID,XORJ,YORI,XLEN,xl,yI :INTEGER;
xscale, VSCALE,NuM,MEOIAN,LOX,HIXMEAN,VARIANCE :double;
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hi,Ihean,hvariance,loh,' ,h :do~.e;
p :pointer;

BEGN
markp)
newttenriset);ne.Csetg);ne.'seth);
setwindow(36. ID, 7B, 1);
READ IN Csetg)
ir (not EXiST(setg-.narne)) or Csetg-.SIZE <=2) THEN begin
release~p);
exi t;

end;
read~r',se: --J;
ir (no: EXIS' seth.namne), or* (seth^ .SIZE 4= 2) THEN begin
r&ease' );

end;
.r ,te' r;
WRI7('Do yO. .arlt a printo.t? ');PRYNT:-READKEV;write(prynt);
.r ,te'n;
.r-,te'r- -- PLEASE WAT -

WR:TELN;

ME AN VAR ,setg,mE AN, VARjANC[E

SORTHR(setg-);
LOX: =set .0A7A:1];
HlX:=setg.A-A~setg-.SIZE];
setg-: temset-;
MEAN VAR Cseth-,hME AN , VARIAN.CE);

SCRTHRSet');

HIM:-seth-.CA'A[set.SZE 3;
Setr-: terpset-;
XCRI := ;
YOR; :=21C;
XLEN :=25C;
YLIN:=190;

if Vix ?er.h~~'

(dra- the axes "

LINECXR,V0RI,X0RI.XLEN,YCRI);
L:NE,'XOR;,VOR;,XORLVCRI-YLEN);

(P PL0 THE MEAN LINE and WR17E THE MEAN ANC FILE NAME *
SE7COLORRE);;
LINE(XOR.1I,RCUND(YORI -MEAN'YS-AL-E),XDRI.XLEN,ROUNO(YORI-MEANVYSCALE),);
str[.rnea:12:5,st,/);o~textxy(3O,33O, 'Mean .. tf)
OU7TEXTXV(3CC,3?C, 'File . .setg .name);
str~variance:12,stwf'l);outtextxy(300,34O. 'Var 4tf)

SE TCOO R green);
L INE (round(A ORI *hMEAN'xSCAL F) ,yor4.1, roundC XORI an*xsca'e), VORI-ylen);
str(hean:12:5,stu'!);o.ttextxy(1CD,330,<Mear - *tf)
OUTTEXTXYC100,320, 'File - .+seth'.name);
str(hvariance:12,stuf);o.ttextxyCIOC,340,'Var .tf)

(I NOV PLOT EACH OF THE DATA POINTS '
SE TCDL OR (YELL V);
FOR j:- 1 TO setg'.size DO BEGIN

xl: =round (XDRI. set ,. da ta[J) *XSCALE);
yl:.VORI-TRUNC~setg .OATA~j)-VSCALE);
PUTPIXEL(xI,yI,ye'.1o.);
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end;
IF UPCASE(PRYNT)-.V' THEN PRTSC;
pause: .readkey;
rest orecrtmode;
-e14se(p);

ENO;

C'original *

(this plots the data in a time series fashion '
~it can plot a moving average of any odd size *indo. '

PRCCE',RE TImEP.CT;
VAR AVERASES, setg : INFoptr;

MCVING,PRYNT,.jac :CHAR;

XSC-ALE,WN ,J,,VLE,R,X,lID,XRI,YDR,XLEN,x2,yI :INTEGER;
SUm,YSCALE,NuM,mE::AN,LOX,HIX,MEAN,VARIANCE :double;

STUP,':FILENAME;
poin'. poi nt2 :i nteger;

pixelclc- word;
P :pointer;

BE S If.

ne.(setg; ;ne..averages);
set indo.(C36, ., 76, 18);

iF (no: EXIS7(Seg^.narne,; or (setg.SIZE <- 2) THEN begin
rel ease ~p);

end;
wndo..: C;
averages-: setg-;
*ri teln;
WRITE,"Oc yow want a primto.:? : ');PRYNT:=READKEV;
wri teln;
WRITE','se mo.,'ng averages? : ');MCV:NG:-READKEV;.wri*teln(' ',moving);
wri telr.;
IF UPCASE 'M^VN.)=> THEN BEG:N.

'WIN03: z2;
."Ile not oddC-indoo) do begin

WRITE'wirdo- size fo- averages CO00.): ');intREA(WINDDOW);
wri teln;

w- te' r- Please wait
for A: 1 to CSetg-.s'ze--indo-1, do begin.
Cno.w calc~late the moving average values '

SijnI: .0;
for y:- 1 to window do

averages-.ata[x(truncindo./)1):SuJn/window;

ENO

Else wrlteln,' -- Please wa~~ -

MEAfNVAR(setg-, MEAN,VARIANC1E);
SORTHR~setg);
LOX:.setg.DATA'.];
HIX:-setg^.DATA[setg .SIZE];
XORI :-90;
VORI :-210;
XLEN :- 500;
YLEW: .140;
VSCAE: -YL EN/(NIX);
graphi x;
(- ORAW THE NUMrBER LINE '

XSZALE:-TRUNC(500/setg .SIZE);
if xscale-0 then xscale:.1;
SETCOLOR(WHITE);
LINE(XORI , 0R1,XORI.XLEN,V0RI);
LINE CXORI,YORIXORIYORI-VLEN);
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FOR X:- 1 TO TRUNC,:C/XSCALE; 00 BEGIN
LINE(XORI.X*5O'XSC'ALE, vOR,XDR1,X*50'XSCALE, YORI.1D);
STR(X*50:3,STUFF);
OU~tEXTXY(XDRIX*5OIXSCALEB, YORI.15, STUFF);

END;
FOR X:- 1 TO 4 DO BEGIN
LINE(XOR1,,YORI.X*35,CR,-O,VCR-X*35);

OU7TEXTXV',XDRIBD0,YDRI(X-35)-4,STUFF);
END;

(I PD THE MEAN LINE and WRITE THE MEAN AND FILE NAME '

SETIC:'DR CRED);
LINE(XDRI,RCJNCVR:-MEANIYSCALE),XORIXLEN,ROUNDYDRI -MEAN*VSCALE));

stm(,ear:12:S,st, f);ottextxy(25D,330,'Mean +tf)
setColor .nite);
CUTTEX7XV,'25-,320, F'Fie '#setg^.name);
strC'.inco:12,stLff);ottextiyC

250,34 , Window +tf)

(* ND~w PDT EACw OF THE DATA PCINTS *

SF7CC-ORCV EL LOW);
pc~nt1:=1;
P01 NT? =se tg-SIZE;
IF WINCw4> 0 THEN begir
(calcl'ate the first and last points who i

CD e plotted depending on the window size, '

v'snce somne data points do no: have a moving average '

P).N7:PNTI1TRNWINCW/2);

erd;
FOR j:= point:' TO P^OINT? DO BEGIN

x1: %ro, rd(CRI-J*XSCALE);
Y1,: YCRI-TN~tCkaverages-.CA7A,'V*S'ALE','
PLTPIXELCA:,y,yel lo.);

end;
IF UP:ASE(PRvN71,-'Y THEN PRTSC;

pase: =readkey;
restorectnte;
re'.ease'p);

END';

C' orig14nal 1)
PROCEDURE COMBINE;

(P this appends a second data set to the end of a data set '
VAR X INTEGER;

set'.,set2 infoptr;
p pointer;

BEGIN
rrnar k(p);
ne.v(setl ) ;new~set2);
set-indo.(36, 10, 79,19);
ThCSETStset1^,set2^);
IF (not EX1ST(setl^.name)i or (not EXJST(set2-.name)) THEN exit;

WRITE('NaMe the me. set : );READLN(set2^.NAME);
write in;
FOR X;- 1 TO setl^.SIZE 0O

set2.OATA[Xsset1'.SIZE3 :- Setl.ATA[X);
set2-.SIZE :-setl^.SIZE * set2^.SIZE;
SAVE set2l;
release(p);

END;

C'original '
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Procedure ftestvar(Seta~sett:irfo;var eq~al:booleanl;

(- this performs an f- test for equal variances be*.eer. twvo data sets ~
var pvalue,alpha,fStat,vara,varb,meana,meanb :doublle;

dfl,df2,code :integer;
begin
equai :-true;
wri tein;
writen('Performing F test for Equal variances 1
wri teln;
meanvar',seta,meara,varal;
mearvar~setl,meant, varb);
(- calculate the test stat'stic and set the degrees of freedomI '

if vara>.varb then beg'n~
fstat: .vara/varn;

d':seta.s~ze-';
df2--setb.si .ze-1,;
end

else beg'lr
fsa*:=varbfvara;
dfl:-se:t. size-',
df2:-seta.s- ze- 1;

end;
(I no~. calc-late the p valwe '

pvalue:zfvalue,"fstat, df:,d'2);
wr~te('Enter alpha 'eve' : );double~ead~alpha);
,.rite'n

if pval..e > alp'a then
wt'teln'CP test passec

else beg',r
eGa:fa' se;

writelr.,'P test fa'led 1
end;
writelnlkvar A 'vara:12:5j;
writeln('va 6 ,var,:12:5);
-write'n%'Ary Ii-y continues
pawse: -read- ey;
end;

proced.re tltest;

(0 a t-test for two sets .4th equal variances,independent sets '

var equal .boolean;

alpha,pvaL.tstat,spooled, di ff,vara, varb,meana,meanb :double;

df :integer;

seta, sett :infoptr;

p .pointer;

beg'n
mark (p;;
newCseta);neoCsetb);
tWOSETS(seta^, setbl];
IF (not EX:ST(seta'.name)) or (not EXIS7(setb^.name))then begin

rel ease (;);
exi t;

end;
(01 first check to see if variances are equal )

ftestvar(seta^,setb^,equal);
if not equal then begin
release(p);
exi t;

end;
meanvar(seta^,meana, vara);
meanvar(setb',meanb, varb);
di ff:-me ana me arb;
df:.seta^.size+Setb^.size-2;
(I find pooled Standard dev *
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spooled:-sqrt(((seta.Size-I)*vara + Csetb'.size-J)1varb)Idf);
if spooled < 0.0000001 then begin

writeln('s pooled = ,sPooled:1?:5);
wri tein;
writeln('s pooled < 0.0000C0; 1
writeln('leaving the test routine . 1
pause: 'readkey;
releasep)
exi t

end;
C* calc~late the test statitic ~
tstat:-abs(difflspooled*sqrt(ll/seta'.size4'lfsetb-.size)); ~'use this to integrate t and get p value ~
write e;
writelrC'No. pe-forming T test.');
w''te-Emter the apha level : ');doublereadfalpha):
pvalw;: t value Cts tat, df )
if pv'u~e :,alphaf2 then begin

writelrk-No evicdence to reject hypothesis..
end
else begl

wri teln;
.rte'n('Re~ect tne null hypothesis (AzS)');
wr'telr(' mears are statistically different

enC;
writeint'mear A=',meana:12:5);
wr~te'r~mea- B ',meanb:i?:5);
write'n;
pa~se:zreadkey;
release,;);,
end;

(, original
proced~ire t2test;
(P A t-test for independent sets, equal variances not needed '
(* Th~s 4orks like the procedure above witn different variance formula '
va- eqal : bool can;

starerr,pvalue,alpha,:stat :double;
sPooleoi,diff,vara,varb,meaa,mea,b :double;
deI : integer;
seta, set.' :infoptr;
p :poi nter;

begin
mrark (p,;
ne(seta);new(setb);
twosets(seta,setb');
IF not EX4ST~seta-.name) then exit;
if not exist(setb.nar,e) then exit;
meanvar~seta',meana.vara);
nearvar Cse tb meanb, varb);
di If: .meana-meanb;
stanerr:= sqr:Cvara/seta-.size-varb/setb.size);
if stanerr < 0.0003001 then begin
writeln(*standard error - .stanerr:12:5);
wri tel n;
writeln('standard error < 0.00000I .. 1
writeln('leaving test routine..
pause: .readkey;
exit;

end;
tstat:-ABS(diff/sqrtklvara/seta'.size-varb/setb^.size)); (~use this to integrate t and get p value '
df:-seta^.size-1;
if df > setb'.size-1 then df:.setb-.size-1;
pvalue:-tvalue(tstat,df);
write'r;
writeC'Enter the alpha: ');doubleread(alpha);
if pvalue ;, alpha then begin
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write In;
writeln('No evidence to reject hypothesis

end
else begin

writeln;
writeln(,Reject the null hypothesis (A-9)');
writein(' means are statistically different

end;
writeln( mean A -'.meana.12:5);
writeln('mearn - ,reanb:12:5);
write in;
pause: -readkey;
releasep)
end;

(* original '
procedure t3test;
Cweakest test, independence not needed '
Sworks basically like the above tests but requires paired data *

var equal :boolean.;
stanidev,sjn,sijrsq,alph-a,pvaiue,tstat,meana :doubie;
x, sampl'es : integer;
seta, sett :infoptr;
P :pointer;

beginr
ra rk Cp);
ne.kCseta);ne..(setb;
toosets(seta-, setb-);
IF not EXIST~seta-.name) then exit;
if not existsetb-.nane) 'HEN exit;
samples:-seta^.slze;
if samrples >Seb-.S-*,e then sarples:-setb'.size;
if samples <2 then exit;
Sumr: = C;
s,.rsrq: C;
for x:= to samples dc begin

=r -sum- set a ̂ dat a 1x];
sizrsq:-s~aisqsqr(seta-.data..]);

end;
meana: -sum/samp! es;
standev:=sqrt( 'samples'sumsq-sqr~meana))/ (samples*Csamnples-1)) )
if standev< G.C000001 then begin

writeln('standev -',standev:12:5);
writeln;
writelnk'stan~cev <O.OOCCC 1
writelnk-leaving the test routine
pause: .readkey;
exit;

end;
tstat:-AGS~meana/(standev * sqrt(samples)));
pvalue:'tvaluek'tstat,sampies-1);
wr itel n;
write(-Enter the alpha : ');doublereadCalpha);
if pvalue >alpha then. begin

wr; tel r,
vriteln%-No evidence to reject hypothesis

end
else begin

writeln;
witeln('Reject the null hypothesis (AB)');
writeln(' means are statistically different

end;
writeln('mean - ,meana:12:5);
wri teln;
pause: .readkey;
release(p);
end;
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PROCEDURE uRANDOM;
(* generates a set of uniform samples '
VAR x INTEGER;

seta infoptr;
p :pointer;

BEGIN
marklkp);
ne*(set a);
set.oindowk'36,10, 76,18);
write('ho. many?
intread(seta-.size);
if seta'.size>1500 then begin

writeln(CN.nber set to max of 2500');
seta'.size:=25C^O;

end;
wRITELN;
WR17E('Na-e fcr data file ';
readln~seta.name);
set name:=Set a^name;
wri teln;
for x:= I to seta'.size do

se t a-.data : =-( ran3% seed));
save (seta-);

ENC;

functi'on jn-form(hi,low:double,':doible;
(* returns one uniformr random variable '

uniformr:-rar,3(seed),*Chi -lo.w).low;
EN.^;

funict'lon po-erkrnLarer,exp~onernt:double):double;
(* handles exponentiation for positive numbers with any power ~
label, 10;
beg r
if exponeni.=0 ther

power:zl
else -If narberzo then

power: 'C
else if numnber > .C then

power :-exp~exponenttln~nmhber))
else power: -number;
10:end;

function wgran-dom(alph-a,beta:double):doubie;
CWallaces procedure for generating gamma vars '
(This is called by the beta generating function "

VAR teip3,temypA,temip2,temp5 :doubie;
label 10;
BEGIN
10: tewp2:-ran3(seed);

count: -trunc (temp3);
temp~5: -1;
for y:- 1 to count do

temp5: =temp5oran3(seed);
if (temp2 <- 1-alpha~teYM3) then temp5:-teM5*Sran3Cseed);
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temp2: -ran3 (seed);
if (tuwM2 <- power~te! p5/tel p3,temp4)/(1-tenM4.tenp4te1M5/temp3)) then

wgramdom: tewV5*beta
else goto 10;

END;

function fgrandoll(alha,beta:double):double;
(fishman's method of generating gammT'a rv's
(~This is called by the beta generating function 1)

var temp,temp?:doube;
label 10;
begin,;
10: tep:--1*ln~ran3(seed3);

teinp2:-ran3(seed);
if (teinP2 <- po-er(temp/exp(temp.1),alpha-1)) then

fgrandom:-'alphaltemp'beta
else goto 10;

END;

function betavar(alpha,beta:do,,ble):double;
(* This generates beta vars by generating a ratio of gamima vars *
var temp:double;
begin,
if alpha<1 then tenmp:-fgrandom(alpha,lJ
else temp:zwgrandom(alpha.1);
if abs~temp)>C.CO! then

if beta<1 then
betavar:-temp/Cternp~fgrandomklbeta, 1))

else Detavar:=tem/Ctempvwgrandomkbeta, 1))

ELSE BETAVAR:-D;
E NO;

procedure lotsofbetas;
(* generates A SETOF beta deviates *
VAR x :INTEGER;

set& :infoptr;

P :pointer;
alpha,beta :double;

BEGIN
mfark(p);
ne.(seta);
setwdindo.(36, 10, 78, 1);
WRITELN;
write('enter the alpha:
doubleread(alpha);
writein;
write('enter the beta:
doubleread(beta);
WRITELN;
write('how many?:
intread(seta^.size);
if seta^.size > 2500 then begin

vriteln('NLfter set to max of 2500);
seta^.size :-25C0;

end;
count:-seta.size;
wRITELM;
WRITE('Nwne for data file :1
readlm(seta^.name);
setname: .seta^.name;
wri tein;
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for x~ 1 to trunc(seta'.size) do begin

seta'.datataj : betavar~alpha,beta);
end;
save(seta^);
release(p);

end;

procedo~re Nrandor;
(* generates A SITOP normal deviates *
VAR x :INTEGER;

temp~temp2,mean,variance :do~ble;
seta :infoptr;
p :pointer;

9EGI1%

write',er~ter the mean
do~.ble~ead',meam);
i4t e' n;

. te', ente- the varia-ce: ;

do,,:, eread,-wariance);
WR. E,"
write-ho. many?
intread',seta'.size);

if seta-.silze >250C then begin.
wri te'n ( Niber set to max of 25CC';

seta.s~ze :=2503;

WR7E Narne for data file
read', rse*ta-. re);
setrame:-seta'.name;
'writeinr;

for x:= 1 to trunc~seta-.size/2) do begin
.ri te' n)
te7.p :-ran3Cseec);
temP2 :=rar.3(seed);
seta-.data~x.Ctr~nc(seta.size/2))):= sqrt(.2*ln~temp) )*cos(2tpi~temrp2);

seta'-data~i] sqrt(-2*lni(termp))*in(2pi*tefip2);
end;
if oddk'seta'.size) ther begin.

temp: =ran;3Cseed);
temrp2: ran13(seed);
seta -datarseta .size]:xsqrt(-2*n(terlp))*Sin(*pi*temp);

end;

for 9:2 to seta^.size do begin
seta'.data>J]:z (seta-.data[x]*5qrtvariance))tmean;
end;

save(seta^);
release(p);

end;

function normal (mean,variance:double):double;
(* returns one normal deviate *)
var tem,teip2,temp3 :double;
BEGIN

temp ran3(seed);
temp2 ran3(seed);
temP3 sqrt(-2*lnkltemnp))*cos(2*itfp

2);
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normal :- (tsM3*scrtkvariance))+mean;
end;

procedure directory;
(* makes the call to Check the disk directory for any file specification '
var filespec:filenane;
begin

setwindow.C36,1D, 78,18);
writeC Enter Dir mask : ');readlfl(filespec);
WINDOW, 1. SD, 25);
snowdrgkilespec);

end;

(I original '
proced.ire average;
(I this procedure averages each termr of any number of data sets into one '
var seta,setb :infoptr;

done, narf iIe s, x :integer;
p :pointer;

beg4,
markCp',;
neo(seta);new(setb);
set.iindo. 236, I^,78,IB',;
naf 4les:;
*ri teln;

reaC'n(seta^);
if not exis:(seta'.name;l and (seta-.name[2j<:-'Q), then BEGIN

wrw te'r;
*rite,'Gata file does not exist
PAUS[EAC: ''

repeat
done: =C;
wri teln;

read'n(setb');
if exist(setb.name) then begin

for x:- 1 to seta-.size do
seta'.data)x:seta-.data(x].setb-.dataL'j;

nkgifil1es: .nagfil1es*1;
end
else if (setD-.name<:,'Q') and (setb'.name<-'q') then begin

writeln;
write(CData file does not exist 1
PAUSE: .READKEV;

END
else if (setb^.name-'Q') or (setb.name'q') then done:=1;

until done-1;
for x:-1 to seta'.size do seta'.data~x3:- seta-.data~x/n.efiles;
c irscr;
write('Nwne for new set: ');readln~seta^.name);
save(seta');
rel ease (p);

end;

procedu~re enterrate(var sys:systemrec);
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(~This procedure allows the user to enter or change the interest rate '

C~associated with a LCC system. '
var tempnam~e worrd;

fil file of' systemrec.;
begin

setwi ndow(50, 15, 79,22)
WR ITEl n;
write('Pile name? (C,sysname, ): ');readln(temnpname);
IF TEMPNAME 4>-THEN
SysNAME: tTEMPNAME;

tempname: .SysNAME;
assigrm1fil~temipname' .strn);
if exist2(tempname.' .stm') then begin

rese:t'" ?;;
read~'k-1.sys);
closerl , 1;
wri tel n;
writeln', -- file read - 3

end
else writelnl,' -- ne,. file-- ;
wr~teln
write,'interest reate(apr): ');doubleread(Sys.rate);

erG;

procedw..e evmtvas(var sys:syster"ec);
~This ro..t~ne allows the user to specify what types of single variable ~
Scost componients contribite to the LCC of the system.*)

var Ca.ntvar integer;
tempname :worrd;
fi file of system-rec;

begin
set-inaoD,50, 15, 78,22);
Wq:,E'n;
write,-74le name? ( ,sysname, ');read r, temprame)
IF iEMNAPE <> ' TEN

SysNA."E: TEMPNA?0E;
temoname: =SySNAME;

if exist2CtemDmame.'.st-.') then beg,.n
reset '-,;
read --', sys);
close.-');

writelr(' -- file read-- ;
end
else writeln(' -- new file- 3
write n;
wrte3, How many Variables ');intreaC(couintvar);
windo.(1,60,251 ;c'rscr;
setwindo-C3,2, 78,2?);
wr-,telrn' Single variable Components');

wri tel n;
FOR X:- 1 TO countvar 0O BEGIN

WITEX:2,' TYPE: ');DOUBLEREAO(sys.VARs,Xj);
if SYS.VARS[1,xl 0 then BEGIN
WRITE('constanit )

DOUBLEREAD(SVS.VARS[2. x))
ENO
ELSE IF SYS.vARS[I,X)<ll THEN BEGIN

WRITEC LOW: ');DOUBLEREA0(sys.VARS[?,xj3;
wite(' HI: ');OOUBLEREAO(sys.VARS[3,x]JL

END
ELSE BEGIN

WRITE(' MEAN: ');OOUBLEREAO(sy.VARs[2,X],;
write(' VAR: ');DOOuLEREAC(Sy.VARs[J,XJL;

ENO;
write(' nocost : ');doubleread(sys.varstitm4,xJ);
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write(' phase 4m: ');do,.fleread~sys.varstume[1..4]);
write(' constart: ');do..nereaeksys.varstime~i,AJ3;
write('phase o..t: ');do fleread(sys.varstime[3,x));

E NO;
sys.vars[1. 0): coLuntvar;

end;

proced.'e savesysls,s:systerirec);
(I This ;rocedc.*e saves ar LCC systemn Spec ficatior to disk '
VAR :VER

termna-e :.cr-C;

sys' 7e :-le c' syste''rec;
BEZ:

v.r ' te, 'e namre? (sysrare,l 1 read, rltenamre)
l7 TE.AE <> ''E
SYSNA: = NAKo;

te'f.T-a-e: -Sys,.A-7;

1; EX:S72l:e-.2; TrE.

B~E : E-A

E Q:R C

Cv[ 4:'

I~AS C sy- THE'.

P:Esys7 e, Sys';

~rtced.,e erte~cer~va, sys:syse'ec;;
~TniS reads m the Beta Coy av ard frds the chc'esky sqare root.
STh,,iS sa" o-g~la7 procec.-'e w-tte- for cmc'esky decomnposition using
(the rmeth-ot as exravnet in ji". maindonald's S7A71S71CAL C OMPuTATION '
it aisc reads in afl otPher in'ormatior needed for the CER's of' the LCC'

(*syster to ode sim 'atel 1)
va-

:lntege-;
ter 2, tev, sr, sLcr2, sj,3 :dlo"Dfle;

fii :'' 'e of.systemrec;
irterce.",certyoe :char;

beg'-
se!.dino-5CA5,7,22,;

write('File nane? k sysname,'); -1;read1,(terMame,;
IF TEMPNAAME c> THEN~
SySNAME:-.TEMPNAME;

teYYname: .SysNAME ;
assigm(fi 1 ,teY~name..sttr';
i f exi st2( tename -.strr' then begi r

reset~f'fl);
read('!i1, sys);

wr4 teln;
wffite!,kC -- file read -



end
else writeln(' -- ne. 1 I-e
writeln;
write(How mnany CEPS : ');intread~x);
if x?20 then beg",n
write('X set at upper limit of 20.');

writelm;
x:=2C;

end;
sys.cervars',,..I x
writeln;

writ', r-c, 7 );intreao',cer);

fce-2C :"~el beg;
'~ER# se: at upper lii of 20.');

ce- =2^C;

sel..'-).3,2,7 8,2?),;

~~..........;

re;e.t
:e, t..w-ce, of p 's k(,r.aA9,: ");intread)');

.- ite'-' Til pe-or. lengths ... 3
~.-te'
-,e rocos' );do..beread~sys.cetitre,cerj23
wrte prase in :);do,.lereaC(s) .certire,ce])-;

.- te)' corsta't ');do~iferead~sys.ce~timef2,cer'P;
'*-te pnase c..t : 3;Cooereadsys.certrle[3,cer));

-rteir, N, %a..a og');
.4 ea,-ng c.rve');

reoea'
.r,*e', r'c :'- y;e c' CEP 7 :);certype:rreadkey,

sys.ceyes~cer]:aecasCetype);
ur 'sys.cetyoes~cerj-A') or )sys.certypesfcer]='N') or (sys.certypesjcer). 'Li);

..r~t
wr-te)' Is there an intercept termn? :');4ntercept:.readkey;

- te'-
if ('itece;t,'y') or (intercept-' V) then begin

o'ite'"C 'The entercept .ill be called ?nt,.';
wrile'r,'Erter the mtercept v'alue (,4 : ');dou.lereadtsys.cerfletas[cer,n4' );

case cerype of
'R :Oeg--

sys.CerVARs'cer,nI,1):=0;
sys.CerVARs~cer,n.1, 2): -. O;
SyS.CPrVAR~cer,n.,3:i.^0;
sys.CerVARscer,n-!,4j:=4.0;

'd' :begin
&ys.cerVARs(cer,n-l .1]:=

Sys.CerVAP5s[cer,n1, 2):-x(.0;
sys.cerVARs~cer,n.13 ):-ex<p(3.0);
sys.cerVARs~cer,n!,4B 4I.0;

end;
L:begin

sys.cerVARs[ce,n'I, 1): ';
Sys. cerVARS~cer,n.1,2) :-exp~l.0);
sys.cerVA~s~cer, n.1, 3): 'expUl.);
sys. cerVARstcer,ml,,A:4j.O:
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end;
end; (* end of case

end; (* end of if '
cirscr;
writeln;
writelr.C'Explanato-y Varia ' es CERU-,cer. *)');

writelm;
FOR X:- 1 TO ni 00 BEGIN

WR*,E~x2,'TVPE: 1,;OOUSEREA'(sys.cerVARs~cer,X,l));
wq:E-- LOW: ');O0JB.EREAC(Sys.cerVARs~cer,X,2));
wRV'El, HI );DOU2 EREADC'syS.cerVARscer,X,3]);
.rite, a ');do~oo.ereadkly.cervars~cer~x,4J);

END;
k-ndo.k. 1.8C,25',;c1rscr;
set-.n'o-13, 2, 76,22);
wrte'nr, Geta estlra:es CERU',cer, )');

wr"tel,;
Po : to n do beg'n

wte~'Ene~ ~,. ');doa.eread~sys.cer'betas[cer,xJ);

er

i'r (intece;*z yi ) or (intercept'Y) then
m -r.,,

sys.cervars~cC', C,I:n

for x:z 1 to n do
fo' y:= I to n do

sys.cercovsL'cer,A,y>,=O;
(read in the ccv riat''A in triangular form~

.rite".n,'No. the Zovariances 1
if ( mtercept= y ) or k-nterce*=<Y) then
writeln('Reerroer, the enterce *t is called ,nK;

vor: te' n;
for A:z I to M do

for y:= " to A dc 'eg'r
w-tf covr',A,', Ky,]I ');oouLleread~sys.cercovs[cer,y,x]);

end;
wri tel n;
write(CEnter the mSE: ');doubleread!(sys.cermse~cer]);
(* construct the cholesky sqjare root f
for A.:= I to m do begin

if x>1 then
for y:= 1 to x-l do

for z:- x to n do

teTm: .sqrt (abs(sys.cercovs,'cer,x, xj );
if abS(temip)<-O.C0.1 then temp:zl;
for y:- 1 to n do

sys. cerccvs[cer, x,y] *sys. cercovs[cer, x,y] /tenp;
end;

end;

procedure rmultirandotr;
var

counter~z,n,x,y,j~k :integer;

betas :doubvect;
temllpavre :worrd;
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(~type as speccifieC fly "tipe" wich is passed in. t

(NOTE. hi and low contavn the mean, and var for normal var~ables. '
var type2,low.2,hi2 integer;

begin
type?: strunc~ti pe);
case type? of

C:samp',e:=Io.;

tempval : =betava'(1. 5,C. 5);
temnva':empval'Ci-lo.; - lo.;
sample :.Po.er~tempval,transform);

end;

?:beg'n

sam; 7e : zpo-er (temrpva 1, t ransform);

3:13eg' n
te-pva' :zbetavarD.5,1.5);

samn, 1e : zo~et ternpva 1 , t ransform);

4:beg~r
temva' :zbetavar,'3.^,1.C);
tempva'.:=tempva'(hi-lo.), . .. ;
sa !e z po-e- ,erlova t ransform);

end;

5:beg',
t emlpva 1 =be tava r,2. 75, 2. 75);
tempnwal z CmpvI , i -2i o. 0-;
samrp 1e -power epva t ansforT)

end;

6: beg'
tempva' :=etavar'k'.C,3.C);
teipa: zteov a* '.4- ',ow. 4 * w
sam-,'e :=Po.ertemrpva , trarsforTm);

end;

7: begin
tempval :.betavarC41.5,1.5);

sample :-pooer~teTpvaI ,transforr);
end;

tempval :=betava1(4.O,4.O);
t emp va' :-tem1pval'Chi-lo.) - low;
sample :-powe,tmpval,transformr);

end;

9: begin

sanfpTe :.power~tempval,transforn);
end;

10: begin
tempya1 :-uniform(' 0., h1;
sample :-~power tempyal , tranSfOrm)

end;
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11: begin

sample :-power~tempval ,transfotn);
end.

end; (0 of case statement *
end;

procedare pva. (var amount:double;nocostt,phasein,cons,phaseout,rate:double);
(This is the presen~t value routine for finding the present value *
(of' a future cash- stream. The amount of money, lenght of phasein, *
Cohasec:t, and constant periods are passed in.

var areap' ,areaoc,areaco,totalarea :double;
lastcamarea,height,vaie,nocost double;
x, 1 e, phi , po, co integer;
portion largevect;

begin,

write~n'nocosttz',nocostt);
writeln('phasei.n='phase',;
wrttelnkcons=',cons);
writelnC 'phaseout=',phaseo.ut);

paise: .readkey;
areap4:-0;
areapo: 'C;
areaco:=0;
total area: =C;
phi:=truncl~pnase. .),
po:'trunc~phase.ut,;
co: 'tr.nc,1corsl;
nocst: 'trunc(nocostt);
height: '1;
(, calculate the total area ~
if phi>C then

totalarea: .phi'0.5*1height
else phi:zC;
if co>C then

totalarea:=totalarea *co~heig!t
else co:=0;
if po>0 then
totalare2:= totalarea .po*C.5*heighit

else po:-C;
1 e: =phi .-o~po;
(* calculate the portions '

if phi<:>C then begin
I astcinarea: =0;
for A:= 1 to phi do beg--n
p~t~[j:k(~egtit **.-at~ae)ttlra
lastc.anarea: .porti on~x]'totalarea;

end;
end;
if co<.0 then
for x:- phil to phi .co do begin

portion~x]:.hei ght/total area;
end;

if pc>D then begin
1 asteckmre&: -C;
for x:- le dowrnto le-posi do begin

portion[x]:.((le-x.1)*(1e-.41)1/po*0.5-lastcLpnarea /totalarea;
lastcojnarea: -pcrtion~xJ'totalarea;

end;
end;
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Cclaculate the overall pv nx,~er '
value: -C;
for x:- I to le do

value:-value +portion[x)'amownt/powerCC1.rate/1DC.),x.NCCOST);
amiount: -val ue;
end;

proced.re mortecarlo;
('This actually runs t~he sho., it calls the routines to simulate the '
(system cost as many times as requested.

var tota' cost,terrcost~tempcost2,firstx :doLnle;
r,,n,marruinS,CO, ter,Counirter2,x,y,z :integer;

nme : orrd;
fy Ie r, amre :filename;
sysf'1e :file of systemrec; ~'tne system file store to d',sk *
syst.nr :systernrec;( record to hold cost components ~
betas :doubvect;
te-"pset ir3

t e-nor*t tensq;
p :pointer;

be;4n
mar'

ne.'terrvset;;
set-indo-LC,0, 78, 20);
wr te r-;
*ri~e(l Systenr file? :');readn~name);
fyIena-,e: =conca t nameC, '.sm
if not exist,2(fylename) then beg'n
.r'te!-.'7 hat f.1e is r-ct he'e 1
pause: =readI~Cy;
re' ease',P';
exi t;

end;
or itenr;
wr iteC ,'HO. Mary runs? : );ntread (n~arrns);
if nunrns>500C then beg'.n

narr,jr,;: -150C;
writelnk"Runs set at max of I5CM. ;

end;
assig-,sysfi le,fylename');
reset~sysf;'eC;
read',sysf,,e,systumr'; (* read the disk file into the system record 1)
for r:- 1 to nzrrans do beg'n

wrte('.'1;
total cost: =0;

(* add variable costs to the total cost 1)
couniter:-trunc~systar.varsi,CiD; (* n~inber of variable components *
for x:- 1 to counter do beg'n

tempcost: 'san 'e(sys'Lrr.vars~rl,xJ, systjn.vars[2, x),systian.varst3,x], 1);

te);
totalcost:.totalcost + temp~cost;

end;

(* now add cers to the total cost '
counter:-trunc(systL1.cervars[0,1,1]); (* numbifer of C[Rs '
for x:- 1 to counter do begin

counter2:.truncsystt~n.cervarstx,0,l1)i; (* numlber of input vats for this cer '

betas(Cj:.counter2; ('a counter used in multinormal *
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for y:- I to cownter2 do begin C* puts betas and cov in temp variables for use '
betas[y): .syst,.cerbetas >, y];
for z:- 1 to cow.nter2 do

tewmpnat(y, Z] :-systJ7o.cercovs[;.,y, zI;
end;
nul tinormial Cbetas, tempmat);
te~cost2: .0;
for Y:- 1 to counter-2 do begin,

if y-1 then firstx:.tempcost; (* store for use in Ic cers *)
if (systjn.certypes>]='L') or (systifir.certypes~x)='N') then

teMiPCOst: -Lr.(tempcost);
temnpcost2:=tetmcoSt2.tempcost'betas~y]: (* running total within cer '

end;
tempcost2:ztermcost2.sampleCU',O,systum.cermhse'rxll'C); (* account for MSE variance of prediction,)
if (systuri.certypes[]=L) or systJn~certypesrx>='N) then.

tempcost2: 'exp~teriipcost2);
if systr.certypes[x,1'L') then

tempcost2:-tempcost2 ' firs:.x;

pva' tempcost2, syst~r.certime[4, x],systum. certinie'L,x], systumi.certimeL2, x], systar. certime[3,x] , systin. rate)

totalcost:ztotalcostteipcost2;
end;

temrpset.data~run3:=totaicost; C' store this observation of total cost '

end;
wri te -;

writelrnEnter namne for outp-t set : );readln~tempset'.name);

save',tepset^);
releasek:)

CEverytl';ng from here dow is menus. These are
C the heart of the user interface, what you '

C' see here are the menu~ test entries and the '
(' res~lting procedures called for each menu '

( choice. The actual scrolling of the cursor, *
C' first letter selection, and popup oindo-s
(' are handled in the CAVEMENJ unit.

PROCELRE en-terMENJ;
var

G^C,go2 :char;
wich,temp :integer;
p :pointer;
TEMPNAME :VRRC;

BEGIN
ma rk(p);
new(sys);
sVrstl,0J:.0;

sys-. cervars O, 1, 11:-

WIch:6;
menu^.left[-ich):-34;



meni. Max LwichJ: -4;
menu.top[wich]:.1D;
menu-.text[1'.wich]:m Wars (single)
menu-.text[2,wich]:-'De~ine CERs
nmn .text[3,wich):z'Interest rate
imnu-.text[4,wich]:z'Save file '

ienu.text[O,wiCh]:='Backup
meu.text~men.max4.ic ->1.,wich]:-. DEFINE SYSTEM

temp:=1;
WHILE upcase(G) <> 'B' 0C BEGIN

wi ldo-1, 1, C, 25);
nv~cortroI i .ch, go, go2, temp)
GC: =UPCASE (GC)

CASE GO OF
V ertva's(sys^);
'0' ente~cer(SYS-');

I ente~rate~sys2);
'S': savesyslksys^);

ENO; (*END OF CASE AND ELSE*)

ernt; ' i!LE LOOP ENO '
rel ease (p),;

END; (I PROCEOURE ENO

PRCD,~jR7 testME.;
var

GO,go2:cha-;

tei'rstng:strng'15;

beg'n
iwi crt: -5;

('''CHANGE THESE PARAMETERS TO MAKE A NEW MEN SCREEN '')

rneru-.maxL1.4chJ:=3;

men.^.tex:E(3,,ich]:= 'Sarrples paired';
men .. teA1[C,.ichj':-'Backup I
mfenu.text~me .maxwichj.1,.ich]:.' Tests *

temp:=I;
WH4ILE wpcase(GC) - 'a 00 BEGIN

wndo.(1,1, C, 25);
mnn.cont rol(C.ich, go, go?.temp)
GGD: .PCASE (GD);

CASE GO OF
'E :tltest;
I' :t2test;

'S':t3test;
'': exit;

end; (* of case 1)

end; (* 00 1 e *
end; (* procedure '
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PROCEDURE workMENU;
var

GCC.go?: char;
bwfch.temp: irtege';
temp st ring: st rimg5;

beg-r
wi ch: .;

SCHANGE THESE PARAMETERS TO MAKE A NEW MENU SCREEN

ffenu,.top[-ichlj :-6;
men^.rra4.:ch. : 4;
men .tex:tj,.ich]:= 'Mome'nts

inn. et2,wi&hJ:= 'Frec; Histogram';
me%.te~t3,ich]:z 'Time plot
men. .text ^O,-ich]:z'Back~p
men.^.text,4,.ic"J:='X vs V Plot

nen%.text~r6,,,ch3:. 'Nonpar. Prob 1
men i.text(menj.max4.ch.1,vichj':.' Statistics '

..indo..........?5

r..,.control (..Ich,go,go2,temp);
GO: mUPCASE 'GC);

CASE GO 07
'M' :momerts;
'F' :hi'stogram;

'T' : t4 l ot;

'':quarti-es;
'N':probab'!'ty;

END; (I ENO OF CASE ~

end; *' -hie
erd; (I procedre

PROCEDURE fileMENJ;
var

GO. go?: char;
wich~ temp: integer;
tem~pstrng:stringI5;

begin
Wich:=3;

(**"'CHANGE THESE PARAMETERS TO MAKE A NEW MENU SCREEN P PP

menu.left~wich):xlB;
menu.topfwich] :-6;
feru Maxwich]:-4;
men'.textf1,wich):-'Read ASCII'
meu.text[2,wich]:. 'write ASCII
menu.text[3,wichi:-'Set Directory
menu.text[4,wich:.'Oisk irectory';
wnvu.text(O,wich):.'6ackup ;
mnu.text(menu^.max.'icIj],wiChJ:.' Files

go:-menu.text[j,wichH('i;
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G02:-menu'. text [1,wcn1( 1];
te"V: '1;
WHILE upcaseCGO) <'8' 0D BEGIN

window(1, 90, 25) ;
ienucontrol Cwich,go,go2,temp);
GO: -UPCASE (GO);

CASE GO OF
'S :SH^OWDIR('*.set');
R :READASCII;
W':WRITASCI';
'0 :directory;

END; (*END Or CASE *

end; (end of while *
END^; (* end of procedure )

PROCEDURE randomen%;
var

GO, gc2: char;

tenrstring: stririgI5;

begin

SCHANGE THESE PARAMETERS TO MAKE A NEW MENU SCREEN ***)

men'left[-4ch':= 16;

mer-^.max[.ichJ:=5;
nt~text j1.ch : 'Uriformr Random';

nen.te,~t[2,.ich]:='Nornma! random '
mer,".text[,wic-,:= Generate betas';

menL- .text [5, -i cJ 'Simi.l ate costs';
fferu.tetD,-4ch]:='Back.p I
ffen- .text [m-en%.max[*i ch3 -,wi chl:= Files

temp: -1;
WHILE pCaSeCGo) <> 'S' 00 BEGIN

nido.. ,1, ,BC, 25);
rmnkControl C.ich,go,go2, temp);
GD: 'UPCASE (GO);

CASE DO OF
'S':montecarlo;
'U:uRANDDOM;
'N':nrandon;

'M' :mu. ti randorr;
END; (* END OF CASE '

end; (* end of w~hile ~
END; (* end of procedore *

PROCEDURE dataMENU;
var

GO, go?: char;
vich, teMl:integer;

begin
wvich:.2;
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(*RR**CHANGE THESE PARAMETERS -O MAKE A NEW MENU SCREEN
menu-.left(wiCh]:-18;
menu'.topfwich) :.6;
menu-.max~wich):-6;
wenw^.text~l,wich]:= Enter

menu~text(3,wich]:-'Modify
menu^. text,. ,wich):~ =Combine
menu-.text[5,wichlj:= Average
ffenu'.text[6,.ich'1:=D0efine systemn
menu.text[,.ich]:z Backup
menu,.textrmenu.max.ch.1,wich-]:=' Data ;

t emp:= I;
WHILE upcase(GC) <. '8' 00 BEGIN

men, cOntrc1 (..ic., go, go2.temp);
GD: zUPCASE (GO);

CASE GD OF

"":see;
'M' :charge;
C' : comn 4,e;

'A' :average;
'0' :entermer.;

end; (I end of case ~
end;

end;

PROCDOURE NEW.SEEZ ;
begn,

wr i t el
write('Ne- seed: ');intreaclseed);
if seec>0 then seed:-seed* -1;
en.d;

PRDCEOD;RE mainmEU;
var

GC, go?: ch-ar;
vi Ch, temp: integer;

begin

w*iCh:4I;

ffwnu^.rma4L# ch] :=6;

menu,.textp4wich:3;~e
rmn^. text[5.wich):~ R'andt dvita
menu'.text(62,wicl,):. NC.seed

wenu .textteLu3,wichi:z hbIesig : AN EU '

go meu. text, i ch 11;

meOu'.ment6,wcf1.wic seed

WHILE upcase(G0) <> 'Q' 00 BEGIN

menuControl (.i ch, go, go2, term);
GO: .UPCASE(CO;;
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CASE GO OF
0' : OATAMENU;
': WORKMENU;
T':TESTMENU;

IF' fi 1emnu;
N' NEWSEEO;
W randonmenu;

END; (*END OF CASE AND ELSE*)

end; (~WHILE LOOP ENO *
END; (* PROCEDURE END *

procedure open;
type fy', file;
var p :poi nter;

x :integer;

Val :real;
textf2l :text;

f;,1: fyl;
res. t,size :word;

beg'n
graphi x;
setcoI or whi te);
line~k5O, 10,21D, 100);
1ine(5C,203,50,20);
setcolo"krC)
Iine (51, 60, 20, 60)
for x:=1 to 62 do begin

va':xsin(x/1O)I.5;
putpix.el (51,x,trunc(60-val*50),yellow);

end;
for x:-63 to 160 do begin

p~tpixel (51.A,trunc(6D-val*5D),yelio-4);
end;
setcolor(.hite);
line!390. 100,550.100);
line(390, 10O, 390,20);
barjdl(391,100--u ,.21, 99,6, true);
bar3dC.'23, 100-60,453,99,6, true);
bar3d(455, 100-50,495,99,9, true);
bar3d 481, 100 -35, 517, 99,,true);
bar3d(519, 100.15,549,99,8,true);
set text sty le (1,0, 5)
OUTextxy(60, 200,'GENERIC MODEL BUILDER');
settextstyle(1,O, 1);
outtextxy(280.2-O, 'by ILt David Su~mner');
setcolorC~.hite);
pause: 'readkey;
restorecrtmode;

('MAIN PROGRAK*A)
BEGIN

open;
seed:--123A5;
SETNAME:- MEW';
sysnae: - NEW;
colotoncolor(wt~te,blue);
write(' GENERIC MODEL-BUILDER -- by Dave Smer
gotoxy(1,25);wite('
coloroncolor(whilte,black);
ffainiMENU;

END.
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{SR-} fRange check*.ng off)

{Se.) f9oolean coriplete evaluation on)
iss.1 jStack check'ng or)

fST.} JI/D checking on)
($N.1 J9B7 required)
J$m 65500,16364,6553601 {Tuirbo 3 defa-it stack and heap)

PROGRAMI MATWORKS;
Uses

Crt,
Dos,
PRINTER,
day emen..;

TYPE
FILENAME = STRINOr12];
TENOYTEN =ARRAY .6Ci.C OF double;
doub'eARR - ARRAY [1. .BvCj OF doible;
INTARR -ARR-Av [1..90] OF INTEGER;
WORR!O STRING[B];

INI *7 -INFO;

INFO RECORD
MATRIX TENSYTEN;
ROWSIZE INTEGER;
CCLSIZE INTEGER;
NA'E WCRRu;

VAR
MATA,t1 ATB :INPO~tr;

Da 4se :char;

A00S6@ :INTEGER;
F:L :FILE OF INFO;

MATAmE :WORRO;
TINY :doibie;

x,v,Z :INTEGER;

furcton pOoe r..naber,expofeft:doubl.e) :doubl e;
label 13;
begir
if expomertmC thern begn

powe,: '1;
goto 10;end;

if ninber=C then beg4'n
po.er: =0;
goto 10;end;

if nuriber D .C then
power := expepnen~llnj7nber))

else begin
writelr~nmumber,' njrber must be positive for power function');
pause: 'readkey;

end;
10: en.C

PROCEDURE 1mdcIW(VAR a:INFOptr; n,np: integer;
VAR indx: INTARR; VAR a: double);

C ONST
tiny-..e-20;

VAR
k,j,imax,i: integer;
sLP,dJI~big: double;
vv: doubleARR;
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BEGIN
d :-1.0;
FOR i I to n 00 BEGIN

big 0.0;
FOR j :-1 to n NO IF (abs(a'.MATRIXtl,j]) > big) THEN big abs(a^.MATRIX~i,j]);

IF (big -0.0) THEN BEGIN
writeln('pause in LUDCMP -singp1ar matrix'); readln

END;
vv'i] : 1.0/big

ENO;
FOR j 1= to n 0C BEGIN

IF Cj 1) THEN BEGIN
FOR i 1 to j-1 00 BEGIN

sir a-.MATRIXfi,jJ;
IF (i > 1) THEN BEGIN

FOR k I to i-I 00 BEGIN
sumn Sum-a-.MATRIX~1,k]*a .MATRIXk,.j]

END;
a^.MATRIX[',j] :-sum

END
END

END;
big C.0;
FOR jto n CC BEG:N

sum a-.MATRIX[L,j];
IF (j >1) THEN BEGIN

FOR k I to j-1 DO BEGIN

END";
a .MATRIXKj3 : sumr

END;
dum : vvCi]tasso1);
IF (dumn big) 'HEN BEGIN

big :adur;
imaA -

END
END^;
It' Cj imax, THEN BEGIN

FOR 1to n DO. BEGIN
dum a^.MATRIXL'imax~k];
a^.MATRIXimlax(,k] :za.MATRiX~j,k];
a-.MATRIX[j,kj': dumn

ENO;

vv[imax] :-vvC~ji
END;
irdX4j :- iMaA;
IF (j <> n) THEN BEGIN

IF (a-.MATRIX~j,j] 0.0) THEN a-.PATRIX~j,j) tiny;

FOR i :-j-1 to n 00 BEGIN
a-.MATRIXCj] : a-.MATRIX~i,j]*dumn

END
END

END;
IF (ra-ATRIX'n,n) 0.0) THEN a-.MATR1X~n,n] tiny

END;

FUNCTION EXIST(temp:V0RRC) : OOLEAN;

VAR FIL:FILE;
OK :BOOLEAN;
TENPP:FILENAME;

SO: CHAR;
BEG IN

TEMPP:-CONCAT(TEMP, .PAT');
ASSIGN(fil,TEMPP);
411-1
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RE SETCF IL);
isI41
OK:-IORESULT - 0;
IF NOT OK THEN
EXIST :- FALSE

ELSE
BEG IN
CLOSE(PIL);
EXIST: sTR.E;

ENO ;
EN3;

PUNCT2CN EXIS72,te-j:w'CRRC CCAN

VAR FL:E
OK :8C^.,FA';
TEmPP: I.,,;

GD: ZAR;

ASS ,Nf 7EP-;

CK:=:RES_7 = C;
IF 14 N. 7'

EX:S72 := FAASE
EL SE

BE 3:'

XS72:='R 7;

EN,;

VAR CVER:,"AR;
TE"P:F:ENAmE;

BE G,
c'ver:z'y'
IF AL'mC 7HE,

BG:%
IF EX'S~tlA-uC .NAME) -HEN

B-,'.: "
w,'t~r;R'EUiLEEX:STS, r'ERwRV!'E?: )

OVER: -REAKE .tertn
END';

E N';

IF UPCASE:CVFR) =V THEN
BE G1,r-

TEMP:=COP-DAT(MA'7.r.AME,'.MA7)

ASS IGNk XTEMP);
REA7E (FIL);
wRE(FLMATGC%;
CLCSc-k(FL);

END;
ENO;

PROCEOURE READASC II;

VAR
x,Y,Z :INTEGER;
FIL :texct;
GO. NAP!E :WORRC;
mat :ir.foptr;
p :poinlter;
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7e.(mat) ;

wr~teln; wRITEk'What AS:.! file?');
RE A L N (NAM4E) ;
wri teir';
1F NOT EXIST2(NAPE) 7HEN
BEG IN
WR',Elr(';hE COES NOT EXIST )
PAuSE: -RAC KE V;
release( ';
EX:7;

E N,,C

RE SE'~
MATA-.RC..S:ZE : C;
W'H..E NO, ED 0L D

BEG:'.
MA~-RclS~z MA-.R.WS1ZE-1;

WH:-E NOT EOLN,71L) OC

MA .OS~z: MA'-.COLS:ZE.C;

E NC;

SAVE k MA-C

E NC;
re ease C ,;

PRC:E.C PE REACINIVAR MA:IN-"rri
VAR GC:Cr AR;

if exzstlrrat .NAM.
ther
be;' r

TEM,:CNCA
T ,'at.NAmE,'mT)

ass' gr~'fi1,TEMP);

REOSET"IL);

er

el se

orte( Sory, that -lie is not here
DC:-REA CY,~

E?4C;
E N';

FUNC'TION LOGX:doule;BASE:doule):do6XCe

IF (XcO)OR(BAS[<2) THEN BEGD.
W;7[( SOR, NO NED/JIVE X OR BASE 4 2');

LCD.:ml
END^

ELSE LOGD LN(XfLNB/S4
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ENO;

PROCEDURE hRITASCI I;
VAR

tenri~ame :fil1erarne;
max :obe
DIG,DEC,,X,VZ :,NTEGER;
FIL :te;.t;
GC,NAP: :WCRRC;
mata :r.o*r

o) pcinte,;
BEG.:N
marb .

WR:7E'-W Z. mA-R>: ');REAOLN~mata-.NAME);

1P NC' EX!S7Cata^.NAm[E1 THEN BEGIN
w,-te1r;WTE,'c:E DOES NOT EXIST');

release,;),

END;
REAC;D A')

w~iteCkNe. data 'lle name? : );readln(tempname);
ASS~L ternpia.e);
REWR:7[kF:2);

for x:= I to mata^.rowsize do
for y:= I to ma~a^.colsize do
if ats ,atamat' xA,yj.max then max: =mata-.matrixx,y];

dec.=C
d' g: -J;
FOR X:= TO mata-.ROWSIZE DO BEGIN

FOR V:= I TO -rata-.CO,.SIZE DC

WR47E.N,-L);
END;

rel ease',;';
END;

proceC.'e onernat~var mata:irnfoptr);
beg'
wri teln;
wr'lte(CWhich matrix?: ');readln(tata'.name);
wrtte' r;
end;

PROCEDUE VIEWCMAT: ItJ~ptr;AUTO: INTEGER);
VAR X,Y :INTEGER;

Saiv :chat;
BEGIN
windoV(1.1,8O,25);
CL RSCR;
FOR X :-1 TO rat^.ROWSI7E 00

BEGIN
FOR Y:- 1 TO miat^.COLS1ZE C0

WRITE(vat^.ATRIX[X,Y]:B:4,'
WRITELN;

END;
PAUSE:-REAOKEY.
IF AUTO =0 THEN BEGIN
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wniteln('Do you want to save ',matt.name, 1 (Y/N)');
SAIV:.REAOKEY;
if upcase(saiv).Y' then

save (rut, 0);
END;
END;

PROCED URE REEDRKEY;
(I read a matri.x in from the keyboard*)
VAR

X,Y,2YLE INTEGER;
OVE R CHAR;
ma: :infoptr;
p :Pointer;
B[GN

marP"
new Cmat;
se:thdno.(35,10,75, 1B ;
matt.name: ='. Il'1;

mat^. co1 5 ze: :1;
ma^. ros ue:=l;
WR:TEV'Name for m-,atr A.:

REflULk'rraL. NAME; ;
IF EXISTImatt.NAME, THEN

BE G N
WRITELN;WRT7E(FILE EXISTS, OVERWRITE? (V/N): )
OVER := READKEY;
wri teir;

END
ELSE

OVER=Y'
IF UPCASE(OVER):'V' THEN
BEG:%,

WRITELN;WRlTEC'Ho. many ro,.s?: )

READJ4Crat.ROwS:ZE);
WRITE N; WR:TEC'HO- many cots?: )

REAOL:4,-ma:^.COLS2E);
FOR X := 1TO mnat^.ROwSIZE 00

FOR YV: I TO mat^.COLSIZE 00
BEGIN,
WRITELN;wR:TE(kEnter ELEMENT [X ,,) )

READLNlmat-tMATRIX[X,Y]);
END;

END;
SAVE (MAT * );
release(p;;

END;

PROCEDURE CHANGE;
VAR
XV :INTEGER;
SAIV,chanj :CHAR;
rnata :infoptr;
p :pointer;

BEGIN
mark (p);
new(mata);
satwindow(35, 10,75,19);
onemat (mfata) ;
REAOIN(PIATA);
Ir not EXIST(MATA^tNAME) THEN begin

rel ease(p);
exit;

END;
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WHILE CHANJ'Y' 0O
BEGIN

wri tel n;
WRITE('Change something? 1
Chanj:-REAOKEY;

17 upCas! '.'" THEN

BEG IN
writeln;WR'TE('Cha'ge which elemerit?Craw):');
REAONX);
writeln;wRITEC'Change whch element7Ccol):');
REA.CLN),'v;
w.riten;W:7ECCLC VALLjE.,MATa-KMATRIX[X,Y),' NEw&');

REA0LNk MA aMATR MX ,Y);
wri tel n;
vi e- Crat a, C)

E C;

releasep,
ENO;

PRCCjRE ACOMA- Cvar MTA,MATBINFPptr;ACDSUB:INTEGER);
VAR X,; :IlNTEGER;

SAIV,PALSE :CHAR;

BEG:N
IF (MATA'.ROWS:ZE =MATB .RCWSIZE) ANO (MATA-.CCLSIZE MATB-.CCVLSIZE) THEN

BE 3:,
WR1E'Narre the res~lt: )

RE AOLN ,MA7-. NAME )
FOR X := I T MAT A.RDWSIZE NO

FOR V 1z TO MATA^.CDLSIZE 00
MA't-.MA7R1X[X,V] : MA7A^.MATRIX[X,Y] MATB^.MATRIX[X,Y]*ADDSU2

EL SE
BE G*,
WRE(ma:ices are not same size 1
PALSE: REAC3Ev;

EN,;

PRCZEDJRE MULT CMATJ,MAT2:1NPDptr; VAR reswlt:INFOptr;AUTO:INTEGER);
VAR X,V,Z :INTEGER;

sum :do" I e;

BEGIN
IF (MAT2-.ROWSIZE-MATI-.CLSIZE) THEN
BEGCI N
IF AUTO -0 THEN
BEGIN
C.OTOXY(30,6); WRITE('MULTIPLY
GGTOXY(15,19); WRITE('
GOTOXYC15.19); WRITE('Wtat do you want to Call the result?:');
READLN(MAT3.NAIE);
END;
KAT3.R0WSIZE:-MATV'.ROWSIZE;
KAT3.COLSIZE:MAT2-.COLSIZE;
FOR x :. I TO MATI^.ROwSIZE DO

FOR Y :- TO MAT2^.COLSIZE 00
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BEGIN
SumI: -0;
FOR Z 1- TO MATIV.COLSIZE 00
SUM SUM * MATI1.MATRIX(X,Z]*MAT2.MATRIX[ZY);

MAT3.MATRIXIX,V):SUm;
END;

IF AUTO - 0 THEN begin
resul t -- at3;
VlEw(result,O);
save',res.2 t,O);

end;

END
ELSE

BEG:%
WR 'EL N;
WRT'ELN',' ',MATI-.NAMC,' X ',MAT2^.NAME,' UNDEFINED DUE TO SIZES.');
PA ,SE: =REACKEY;

E N

PRO COAE CDVY2 VAR SCURCE:NP~ptr); *ADD A COL OF i's TO LEFT OF MATRIX To GET INTERCEPT ~
VAR X,Y,tern~s'ze :INTEGER;
B[GCN

sowce.cclsze := source-.colsize *1
for A:= so.rce-.OO1 size dod-to 2 do

fo' y:t 1 to source^.rowsze do
so~rce-.matrix~y,x):ssoorce^.matrix4y~x-l);

for x:= to source-.row.size do
so ce^.rnatriAL 1I': =1;

END;

PROCEDIURE CDPY3(VAR SDURCE:INFCptr); (Ibwid x matrix for poly fitting 1)
VAR X,V,Z : NTEGER;

BE C: N
repeat
writeC To what order?: ');READLN(Z);
IF Z > SURZE'.R0WS1ZE THEN

WR:TE~n('Too fe.w observ' s. Max order =',SOURCE-.ROwSIZE-2);
unt~1 zsource.osize;
for x:- I to source-.rowsize do

source^.matrix~x,2):source^.inatriA(X,13;
for x:z 1 to source^.rowsize do

so.,rce.matrix~x4J]:-1;
for y:- 3 to z do

for x:. I to source^.rowisize do
source'.matrixtx,y) : power(source .matriX[A, 2),y- 1);

end;

PROCEDURE TRANSPOMAT (var MAT1:jIh7Optr;auto:integer);
VAR X,Y :INTEGER;

SAIV :CHAR;
tempval : doLb Ie;

BEG IN
IF AUTO - 0 THEN

BE:?

131



write('name* the reslt :');REAOLN(MA7I1.NAME);
END;
FOR X:- 2 TO MATIr.ROWSIZE DO

FOR Y:- 1 TO x-1 00 beg'n
tepva I -futI. matri xx,yJ;
KATI1.MATRIXtx,y] := MATI'.MATRIX'Ly,X];
mtI'. ratri xy, x]: =tenipva';

end;

matl1.colsize:zx;
IF AUTO a 0 THEN begin
VIEW' "T:,C)';
save('nat!,C');

end;
E NO;

PROC 03,RE ?ANIPMAT(VAR mATA:INPOptr);

VARX,2TSR
Saiv,,'O,,^F : CHIAR;
KCNSTAN-: do~..' e;

.riter'Name the res~2t?: ');REA'OLN(MATa'.NAME);
.rte'n('Ho. .1yo. Change the rratrix?');

viritelr(' 1, sqare the elements');
wr"telr,' 2) sqa~re root of the elements');
writelnCk 3) add a constant to the elerents');
wr :el r kr'' t) mi ply by a constant';
w'riteln',' 51 divide by a constant';;

CASZ CH3OOE
1': FOR X :~1 TO ,nata^.RCwS!ZE 00

FOR v : 1 TO. mata^.COLSIZE 00
mnata^.MATRIX[X,V]:= SQR(Tlata".MATR)X[X,Y]);

2: FOR X :-1 TO mata^.ROwSIZE 00
FOR Y 1z TO mata^.COLSIZE 00
mata-.WARMXX,V) :=SQRTmata'.MATRIX[X,Vj);

WRI1TELiN;
'write('Eniter your constant: ');READLN(konStant);
FOR X := I TO mata^.R0wSIZE 00

FOR Y :- 1 To mrata^.COLSIZE 00
mata-.MATR)'XLX,Yj := mataA.ATRIX[X,Yl + konstart;

end;
'4':N

WRITEL N;
write('Enter your constant: ');REACLN(konstant);

FOR X :z 1 TO mata-.ROWSIZE DO
FOR V :- I TO mata'.COLSIZE 00
mata^.MATRIX[A,VJ := mata^.MATRIX[X,Y) *konstant;

end;
15':BEI

WRITELN;
write( Enter your constant: ');REAOLN(konstant);
FOR X :- I TO mata^.ROWSIZE 00
FOR V :- I TO mata'.COLSIZE 00

mmt&a.MATRIX~lXY] :- rmta.MATR!XfX,Vl / konstant;
end;

END;
vi ew(mat a, 0);
ENO;
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PROCEDURE TWOMATSCVAR MATA,KAT8: INFOptr);
BEGIN

wri tel n;
WRITE('FIRST MAT:');
RE AOL N(KI ATA- NAME);
READIN(MATA);
if not exist(mata^.ae) then exit;
wr itel n;
WRIrEC 'SECOND:');
REAOLN 'MATBS .NAMiE);
REAOINMATS);

procedure logit(var wirata:infoptr)-;

begin
for x:= 1 to mata^.roisize do

for y:= 1 to mata^.coisize do
mata^.mnarixtx,y):zlnlkmata^.mtrx~x,y]);

end;

PROR 1uflksbCa: infoptr; n,np: integer; indA: intarr; VAR b:doublearr);
C* Progrms Sin LUBKSB mfust define the types

g'rarray -ARRAV (1. nj or real;
g'~x=ARRAY [!-.r] 07 integer;

g'npoy'np =ARRAY L!. .np,1. .np] OF real;
in the rna'i ro.~tine '

VAR

j,4;,4'i,i: integer;
sjr: rea7;

BE IN

FOR i I to n DC BEGIN
ip indx[i];

IF Cii >C) THEN BEGIN
FOR j ii to i-A DO BEGIN

sum : suna-.matrixti,j]*b1j]
ENO

END ELSE IF CSum~ <> 0.0) THEN BEGIN

i :=

ENO;
FOR i :~n ONTD 1 DO BEGIN

IF fi < n) THEN BEGIN
FOR j i~l to n 00 BEGIN

Sjr Sum-a-.matrix[i,jl'b~j)
ENO

ENO;

END

procedure iny(mata:infoptr);
(* takes a matrix inverse, see Press, et al,p.3B *
var colvect doublearr;

indx intarr;
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0 :doLble;
m,NP,x,y,z~j :integer;

teImTat info;
begin

N:= mata-.rowsize;
NP: '30;
for x :- 1 to N do begin

for y:- 1 to N do

end;
I UdCynrat a, N, NP, indx, 0);
for j:= 1 to N do begin
for y:z 1 to np do colecty:tempmiat.matrixy,j];
lunks lrata,N,NP, nax,co'vect);
for y:- to np do tempmat.ratr~x~yj,:=colvect~yi;

end;
fo' x: 1 to N do

for y:= I to N do

end;

PRCD:'DRE OETERPMATC~o ATG: NPCptr;a~to:integer',
VAR A :ITGR

I NCA : I NTARR;
good :boolear;

p :pointer;

marklp);
ne.Cmath');
L UO:PPC MATG, MATC-. ROWS IZE-, A7-G ROWS 'ZE.INC-X. C)
FOR A :- 1 TO MATG-.ROWSIZE 0O

0:-COATG.MATRIX[X,X];
if atox then begin

wri te'n;
.ritell'nCeterminant
PAUSE: .REAUPE;

end;
release';

ENO;

ProceduAre direct;
var tempspec:'jiename;
begin
set-i rdo ( 35, 10C, 75, 18);
writeC'Enter the Filespec :');read'.nktefpspec);
wi ndo. (1, 1. GD,25);
sho.d~ -ttempspec);
end;

PROCEDURE rgym(linsys:integer);
VAR SSR, SST, nybarsq, vary, meany,S ipy, SUMYSQ, RSQ, d, sse,ssy :doub Ie;

logs :char;
good :booleam;

n,k,X,Y :INTEGER;
PATC,PlAm. :INFOPTR;
yresid,pred :doublearr;
xname,yname :worrd;
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Menui :chaR;
p :pointer;

BEGIN
mark~p
setwindow(19, 7, 5G. 6);
NEW(RATC) ;NEW(MATO);
(* read in and work on the x matrix *
.riteinCX matrix
CNEMAT (?ATA);
REAC:N'MATA);
IP NOT EXIST(MA TA-.NAME) THEN begin

rel ease lp)';

end;
if Crata^.ro~sze~Thata^.co'size) then begin

wr~te'r('Too fe- observations
pawse: =readkey;
rCe ease~p;;

n:=aarc~si ze;
.rite,, Natural logarithms of X? 1

LCGS:zREAOKEY;
*.r;te>r;
if kl'ogsz'y') or (logS='V) :hen

log t~mata);
coPY2?CPA~a);; add constant col'mn' of ones *

k: =moa .cc!s:ze;

ma t n =ra t a ̂
matd =,a^
TRANSPOMATAT TB 7,2; (tmatt retuns xt ~

'M7@ "r);A MCa mata^ returns xtx ~
rr11IAag; ;~ maza returns xitA inv
(- no. reao in and o.o or. tre y matrix .

wr' te'r;

ONE MA,'!AT)';
R[A' !N(MAC2;
I,- N-C' EX;S7-A7C-.NAm[) THEN beg'r

rel ease',:),;
EX',;

end;
yrna,,re:=-atC.na~e;
wrmte('Natural logarithms of V? ');LOGS:=REAOKEY;

-r te'n;
if (ogs-'y') or (logs='Y') then logit~matc);
for <: to matC'.ro.size do
yresid]x:inatc^.matri4x',li;

MjT(MATR,MATC,MATb,'); ~ 'matd^ returns xty t

mu-TCP A7A,MA~b,MATC,l); (matc returns estimated P's

viewCmatc,C,;
(* find mean and sjr of sq of y
sur'y:=C;

for x:- I to n do begin
s~any:' sjimy-yresid[A];
Sjysq: .5jYy~tq.qr (yresi dt'A');

end;

(calciulate the yhat vector '
(~note: here resid^ holds the x matrix

ffult(matd,matc.matd,I); C'matd^ returnS yhat *

view(matd, 0);
for x:- 1 to n do

pred(A):.matd.matrixtx,l);
Ccalculate the residua, vector 1)

for A:- I to matd^.rowsize do
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yresi dcx) :-yresidt~x!-oreCtwx);
(* CU cluate n*Sqr(y mean) *)

nybarsq:.matd^.rowsi ze~sqr(mneany);
(* calculate the sjr of residu~als squared o
sse: -O;
for x:- 1 to n do

sse:-sse # sqr~yresidfx]);
transpomat(matc,l); (I transpose the beta hat vector '
nult~matc,matb,matb,I);(A matb returns b'x'y
SSR:-matO-.mratrix[i,1'i-flybarsq;
SST: .srysq-nybarsq;
write!-,'g covariance matrix
for x:= 1 to mata-.ro.size do

for y:= 1 to mata^.colsize do

.imdo-,,,8CS,25);clrscr;
writeln(' Estimator Estimate Std Error T value');
wri teT'('
write'n;
for x:= : to matc-.colsize do begin

,matc^.matrix~l,x]/sqrt(rata.eatrix,x)):1L5);
end;
wr te' -;
wrnite'r, N ',;
wr~tein('R? - ,SSR/SS:8:5);
wr~teln('MSE - ',ssel(n-k));
wri tel";
wr~ltelr), P) Predictions and residuals');
write'-(' B) Beta covariance matrix )

writelnk' M" men,
mem.: zread..ey;
if upcaseCher-)= P' then. begin
cI -scr;
*r'te',n(P~edictions Residuals');

for x:= 1 to r. do

PAUSEt:=RZAIKEY;
end
else 41' upcase,)en%) B trher beg'n

for x: 1 to rnta-.roosize do begir
w-. eln;
for y:t i to mata^.cols'ze do

er d;
Pause: =readkey;

end;
rel ease',,

er.d;

PROCEOURE xtransformnlinsys:integer);
VAR SSR,SST,nybarsq,vary,meany :double;

siway, SUYSQ, RS,d, sse, ssy, o Id :doublle;
logs :Char;
good :boclean;
pas s,n, k, nnx, X, y :INTEGER;
,ATC,MATO :INFOPTR;
yresid,pred,yvect :doublearr;
xnrame,yv'ame :worrd;
IMU :chaR;

p :pointer;
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aiphasig :boolean;
alpha :do.blearr;

BE'.'N
mark(p);
pass:-I;
setwindow(19, 7,50,126);
NEW(MATC) ;NEW(MATC';
(P read irn and work or, the x nmat-i

CNEMAT',MAT A);
xfae:=-,ata.lane;
REA2:%COA7A);
IF NC7 EXS-(fTA^.NA"E) '.iEN beg'n

rel ease',;
EX>';

erd;
if %ra.a^.ro-s~zec=-ata'.co's~ze) trier beg,

pa~se:2rea. ey;
re'ease,;);

r: rfaa^.ro-s ze;
ranx-aa. co' s ze;
copy2 ,-aa',;
for A: .Cnd

.r t , .a

re' ease,';);

end;

FCR X:= 1 ' MA C.R~wS:Z: C

repea t

matd-: =rata^;

TRANSP^ MA7,MA'6,1); m rat., ret.jrnS xi '
I-L, ~ ~ MArrPI~a ata- returns xtx~'

I NV IA' A "
(* no. o' or the y rrat:
mLT(mATB.P A2,MA7S. ;; m ate- retwrnS xty '

MuJ;L(MA7A, -A29,MA2-,:); ~'matC ret.rrs estimated P's
dr".elbi'Pass - ,Pass;;
C* find mea' ard sir of sq o' y '

s~ry: tC;
sJny S Q: = ̂ ;

16 for A:- 1 to mratc^.ro.wsize do beg'r.

sJLry. 5J1yqatcr'.at'.r.a!4AXI)

end;
ffeany:- (su'my/x);
(~calciulate the yhat vector '

Cnote: here MATD holdS the x matri,,'
rult(MAT0,1qATC.MAT0,2)';
(* calculate the res~dual vector ')
for x:- I to mYat".-.roosize do
YreSld]:cVVETA).mat.latrb4..,2]
(calculate ri'sar~y mear) P)

nybarSq: _n*Sqr~meany);
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C~calculate the Sjn of rwsiO.als sq~ared
sse: -0;
for x:- I to MATDC-rosize do

sse:-sse + sqr(,VRESO~x);
tranispomat(niatC,2); (transpose the beta hat vector *

%~I t(matC,matB,ratB,;

SS5R:=rat9^ Tatri xI.' ,- nybarsq;
SST: zs~zysQ-nyba'sq;
for x:= 1. to mata^.rowsize do

for y:= 1 to mata'.colsize do
ma -ritix~]:za -. mtixxy,(s/rnm'

r' o. create the Z values
MATA- .NA E: = XNAr

REANMA'A);
fo- x:= I to r do

for y:= tc n-T~x do
mat a^ .nra' 4x,y) : zpo.enat a^. atrLlx,yj' a Ipha~yjX

tont~o.s~ze do

for Y:= I to 'ratA'.co's-,ze do

(no. regress aga'-, t-'s timne or XjZ ~
Mata.CO'S 1e:rxnx 1 2;
cc Y2-aa

MIAR :MA'A-;

TRANS A(~'B~l; (*mato returns xt '

MLMA9, wAA,T1&tA, m('ratA returns xtx )

m'ratA retd.rnS ;it inv

rc c .c or tre y rnatrx

rea C .Ivatz
M~A~'A~CM.'B :~;(' mate- returns xty
~ 1~At, (~matC returns estimrated g's 1)

(rcte: on ne.,t 1 -ne matd .'21 hold the A matrix '
~ ~; ~ calclulate the yhat vector, p~t it ir matd

PCR A: 1 '0 mXEAOi

(cac'c-.ate the resida, vector '
fo- X:= to ndo

c' alc.'ate the sr of resid..als squared *
sse:=3
for x~ ! to n do

sse:=sse - sqrYVRZS2j::];
trasoo~a~rnt,.~;C'transpose the beta hat vector '

SS:=mat'.r~t,.i~r,,,nybarsP
SS': vs.s;-rybarsq;
for A~:= I to rata^.ro~s' ze do (I modfy AtXinV to be var-coy matrix P)

for y:2 1 to ratA.colsize do
mratA'.MatriAx,y:matA.matriAx,y)'(sse/(n Cnnnx'2.1)));

a~pmasi g: .fal se;
(* test to see if any alphas are significant)

for x:- 1 to ni.Ifx do
if abs(YnatC-.matrixl,xn~lt(')) > abs(2'sprt~matA-.matrix x-rnk. flArx1iJ) then begin

alpha~x):-alpma[x]ClrmatC-.matriA[J,X~nLJ.-1Jl);
aIphasig: -true;

end;
Fut$.nw:.Xa~re C recall the name of the original x matrix '

if aiphasig then begin C'transformation for siubsequent passes if any significant P)

readin~mata);
for x:. I to mata'.rowsize do

for y:-l to iata^.colsize do
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copy? Cmata);
matc'.rowsize:-.;
watc. col5i ze: -1;
for x:- I to r. do

end;
(* sho. betas and cov rrnatri.; if nothing signicant on first pass *
411 notlka',pas-g) arid (pasSm'.) then beg~m

wr .telr' 'pass = ,pass);
for x:=! to numx'?.'. do

-~ t'~mtc~atr .~::5, ,sqrt~matA^.matrix~x,.]):1I':5);
pa se:zreadkey;

pass: 'pass-:;

hin - )'., 1, C, 25) ' ';

for x:'1to rrx. do
a ,

- Pe' e O-m tre tramsforniat'ions? : ');pause:zreadkey;

if ',Pasez y ',or 'Pa,.se='v) ther begin
maa.are zxr~a-e; (reca'l the namne of the origiral x matrix *
read r r-ata);

lc ~ ,tc mat&^.rr.s'ze do
1.r Y. to -,ata-.ccsize Cc

re'ease':,

Val

-. c,terrl: 4rteger;

mer. rra -:- 7;
mer.-.tcp:- ci-'

menu .texctf3,wich]: Imp.,rt AS,:,
mend.text[4,wiCh]:' wrie ASC,;
mewnu.text[5,wi'c'J' Disk C~r
menu^.text[6,wich]:-'L-st WA f'es';
menu'.text(7,wchi).. MoCdfy
nenu^.text[O.wich):z Back.ip
menu^.texttmenu^.m&a'ich.j,icj':-' DATA MENU

tenp I
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WHILE upcase(GO) <>8 CCBEI

wen uc ant rol (,,i cth. go, go?2, ten',;

GO: sUPCASE (GO);

CASE GO OF
E':REEDKEV;

'V :BEGIN
set.irdo-k5, C, 75218',;
anem1at (mata);

Ir EX:STMATA.NAME)THP*
V:EW(P1ATA,C);

F NC;
:REAAS:;

S:WRIAScI:;

':C'-rect;
M KSIN'

set-4nco-135,10,75,18S);

IP EX;S7,A.NAM~E) THEN

ENC;;

e.'

P"-,;

var
G0, g2: r'a,;

S-g :boc'ear;

c do~b'e;

mr^.top'.4 ch 6;
me'x .te~t[ .- cP']. AddC

nw--x text [- -*ch" In'vert
men. tex*[5,-icr).='7ransoose
men. .te~t[6 ,ct-'p Ch'arge matriA

mer - .text[0 -chj:x'8ackw.P
me.text~meru^.maxl-ch3-1,wlc ':" MATRIX MENU *

WHILE Locase(GO) -' '8' DO BEGIN

GO: =UPCASE (GC);

CASE GO CF
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'A' :BEGIN

SETWINDOW( 35,9, 79, 182;

NOCMATS(MATA, MATS);

IF EXIST(OtATA-.NAME) ANC EXIST(MATr.NAPE) THEN

ADOMATCMATA,MA'@,:.);

END;

S': BEGIN
SETVINDDWC35,9, 79, 19);

'rWOMA7S(MA7'A,MATB);
IF EXIS7)MATA-.kAME) AND EXIST(MA7B-.NAME) THEN

A 0P.ATfMA7A, MA-B, -1);

END;
.M EGIN

SET'WINDDW(35, 9,79,12);

TWMA'7S )MATA, MATB);

IF EX ,T(MATA-.NAME) AND EXIST(MAT2R.NAME) THEN

MU (MATA,PlhT9, MATb,OD,,

END;

SE'-:NDOW(15,9, 79,18);
cnena* ,mtal,;
RE AD:N MACA);
I, EX:ST(MATA-.NAME) THEN )egin

WRT:ECNAME THE INVERSE: ');READNMAa.NAME);,

v:EW)MA-a,D);
erC;

E -D ;
T :BES:N

SE '-W INDDW 35, 9, 79, 2);

READINCMA7A);

IF EXIS7)MATA-.NAME) THEN

TRANSPDMAJ(MA-A, C);

END;

SnemINDW3 9,79, a 8) ;

RE ADIN(CMATA);
IF EXIS7(MATA-.NAME) THEN

MANI'MAT(MATA);

erd;

SETWNODD(35, 9,79,12);
onrenat Crnata) ;
READ IN(CMA'A);
IF EXIST(MATA^.NAME) THEN

DETERMA'(WAA,;);

erd;
END; k" END OF CASE AND ELSE*)

end; (rWHIE LOOP ENDO
END; C'PRG' DRE ENDO'

PROCEDURE MinMENU;

var
GO, go2:cthar;
wich,tvM~r1Yteger;

begin

vi6A c ux [w c : 4

menu^.maxE~ich]:.3;

men,,s texttl,wich3:-O'ata
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go men .text i Chl '.rnSO

GD?: .text -i. 1 text'

ni~.E- t e D % .fa . :1- -1, -iCED:N: M

CAS-E SC Cr

END; *ENDO ^D CASE AND' ELS7E)

( MA:'. RDA'

te MA7R - by Dave S~emer
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4t davestat;

This unit contains many of the statistical procedures called in the
probstat program. Some of then" are original, and others are taken from

Nuerical Recipes or Turbo Pascal Prograimmer's Library.

uses crt,aavemenu;

v ect zarray[C. .2C] o-F integer;
largevect -arrayj. .1_]Zof doz,7e;
dou.Zvect - array[O. 103 of dou.Z'e;
t.wenvect =array:C..20: of doau1e;
charvect =arrayl. .20] of char;
threeoyt-er= ar-ay[. .3,O. .2O0 of double;
fo~.rbyt~er array:!. .:,:..2C3of dou~ble;
ters a= a .2..0 of doulle;
t~ers array,1.O1.O of doZd~e;

twencbe =arayL1..20,I..IC,..ICJ o' doe;
fo~rtersq =array[..2O,..?,1..-3 of double;

s.,ste-rec =record ~Hos the system cost def'nitions
vars threetyt.ern; (*Singl.e var type,si,1o.

va'st,,-e for'tyt~er; (Single var nocost,P,,CONj,PO' lengths '
cerva's foi-t~ersq; C Or explanatory var type,hi,low,alpha '

certimne fo.rbytwen; ( Cer nocost,PI,CON,PC lengths '
ceroetas twers;; C Cer beta estimates

cerlypes charvect; C Cc type '
ce"n"se twervec:; t' er iMSE
ce'covs twencube; ('Cer cov matrices (crholeSky sprt3 '
rate doube; C'Associated interc't rate for PY

end;

sys;!' = syste"'ec;
&x:SANNS:zE =T:GL83

ANNARjAVYP ARRAY [0..2111 OF AXISANNSIZE;

WORR'0 S7RNG B];
infofnatpt' ^ in-fo;
I N, OTat *EN

MATR;X tensq;
ROwSIZE IN7EGER;
COLS:ZE INTEGER;

NAE ORR3;
Ef'

OA'ARA, ARRAY [:_.2500i OF double;
I0 RE:OR'O

CA'A OATARAV;
SIZE IN7EGER;
NA'E~ WORRO;

INC;
infoptr - -info;

CON ST
XOR I.'1;
YORI-12;

var

FIL :FILE OF INFO;

sysnar'e, setname :WORRO;
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MATI, MAT,mrat3 :1NFOna t;

pause :char;
Sys :sysptr;
seed :integer;

x,y~z,count,glix*,g''A2,gli:23,seedl,seed2: integer;
glr ARRAY [l. .97] OF double;
ginextgiextP integer;
g ',,a ARRAY [1. .55'1 OF double;

FU:7- ran3,'A; idum: integer,: doi,7e; from numerical reejoes '

PROZZ-uRE MEAN'.AR(SL-T,:jNP;VAR MEAN,VARIANCE:do.fle); (* orig'nal '

PR:CEC-.A- jACK~S--'G::NFC; VAR ZMEAN, ZtAR: doub Ile);( or g7 na~

1eVa-'a~b,.-: double,: done;

.ic-or 'va' efstat:do.be;df ,df2:intege):dotle;
F.z Z X:S7,e-.p:';RRC3 8COLEAN;

FJNZC.' E!S'2,teep:f'enane) OM N
PREv:[1R; SAV- SETg:I.);

PR3CEZDRE TWCSE-S(VAq S:ETASET8: IN7);

PRCC ZJR, P'Trat;
PRZE""RE REA3ASZ::

PRCZ7:R w9VASCI1;

PR.E..RE C.AN7;

PRCO,. SEE7;
PRCE: ,E SCR'- VAR ST:
PRCZE'-RE A. .
PROED-RE PAC@A2-.:

F~/.~c. a'3~t~ Cxz: 'rteger,: dob'e; from, nare'ical recipes)

Ths procedure was tak en from Numerical recipes. It generates wriform(0C4)
vat' a' es.

(I Prog-ams s'"g RAN3 must declare the folloiig variables
in the ma'r -o...'re. Mach'nes with '-byte integers can use the intege-
imp'e'~e-a*'c- of t -s ro..cine, sznstit.~timg glnma of type intege-, ti-e
core-:ec 0%S- art VAR declarations, and the mOO function in the tmird
line a',e- :'e KG:%.

mseetd :6&:Z398;
Trz tC
faC:.3e 9;

V AR
1''ik~rk integer; *

CONST
ti g-4.0Oe6;

mseed-1618033. 0;
mz.0;
fac-?.5e-7; (* 1/mb p

VAR
i,ii,k: integer;

mj,mk: double;
BGN

Ir (idjr < C, THEP4 9EG;N
m:-mseed-idur;

144



(The follo.'rg Ir block is mi := mj MO^I rrbnig; for real variables. ~
IF mj>-O.O THEN r : mj-rbgtnc~ir/ntg)

ELSE mit :-
glma[553 mi;
fts : 1;
FOR i I to 54 OC BE.IN

ii 21*i M03 55;

M. : ma'i) ;

:7 (r"..K 4 mz) 7HEN Tlk mk-rab~g;
,r,;: glma:-

k :21 to 4 'N BEG:N.
FC3 1 to 55 33 BEGIN

g ma'Lz < mZ) 7HEP. g'rnaL-3 glmaijrtg

g' -e..t g' 4 3;

II r g ne.. 6 74 nK

1 1 nextp 56, 1,4E t g' next,, 1

<. rz', THENrrC:nj.lg

ra-3

PR-1 - A.V'AR ,SE7, 3N, 0; VAR MEAN, VAR 1ANCE o.f' e);~ or ig ina 1)

irs ;'rcced..e 4s a2l or'g'-a'. it calcuLates the ,,ear and variance of
a data se't sr r1 eig-tg.

*. .. l...... ..... *n.r.,**..*rt.

VAR S,S-"S3:dc~z'e;

E' 7.S:ZE<=2 THE%. ExTT;

SU'SQ :=C;

FOR X :* TO SE7G.SIZE N.
BEEZ:,

SUMS SUPt.SC SQQRCS7G.OATA[XJ);
S," SOM -SE'3.3hA-ALX];

P NI;

VAR:ANC[ ~ 'Sm - ASQR"ear)/(-i);

PR3CZ3 RF JA3-K(SET:1NO; VAR ZMEAN,ZVAR:do,,1C); (original 0)

This procedure calcuidites the "jacknife' estimate of the sample variance.
The Standard error of tt"s estimate allo-s a confidence interval (syltretric)
to be drai on the sample variance.

'JAR PSUEDDJ :DATAR.Y;
SUIZ, SUMZS^, SUJM, SUMSQ,PMEAN,1EAN.J,VARIANCE :doulle;

INTEGER;
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In calculating the pse..dovalues and z values, it is necssary to soin
the entire sample se' and their squares r. times, each time leaving out
the i'th value. This procedure gets around that. First the entire set
and their squares are somned. Then, the first value is subracted from the
s-x, and its square from the sumr of squares, and the appropriate psuedovalue
and z value are generated. Then the value is added back. in and the next
value is subtracted out.

BEGDN
IF SE'G.S:zE<=2 THEN EXiT;
MEtANVA;,SETG-, MEAN,VARIANC'E);

SMZ :=O;GSIE

SUMZSQI :zC;
S';M :=';

FOR X 1 TO SET DG.S:ZE 00
BE G
SU,,SQ SUpS^, . SQRS[TG.CATALX]);

SUM SjM SETG.OATA[X3;

FOR Y:= 1 TO SETG.SIZE 00
BE 5" -
sup" :=SUM-SETG.OATA[Yj;

SU'S SU/P-)

pse.^,y:= (SumSQ - (M-1)'SQRkmeanj))/(M-2);
OS~EO~V:~MCV.AR:ANCE)-(M-.)*psuedo'v'j;

S ;z :zSU~9Z-PSUEDO [Vj;
SU"ZSQ :=SjnMZSQ-SQR(PSUEDOj[Y]);

sip :SjM.SE TG.ODA-r-' J
SUPISQ :=SUMSQiSQR(SETG.OATAYV]I;
E N 0;

ZMEAN =S". Y
ZVAR :=CS ;ZSQ-(SRZEA?.)>)IM-1);

E N 0;

FUNC77ON garm~'/x: double,: double;

This is an imconpete garra function pulled from Noanerica; Recipes. It is
--'sed to find 7 vai.-es art F values.

CON ST
str, 2.50662827t65;
half 0.5;
one 1.0;
fpf 5.5;

VAQ
x~tmp,ser: do~ible;
j: intege,;
cof: ARRAv [1- 63 OF double;

BEGIN
cofti) : 76.1B009173;
cofE2) : -96.50532033;
coft3) : 24.01409822;
Cof[41 -1.231739516;
cofts) : 0.120858003e-2;
cof[6] :-0.536392e-5;
x :- xx-One;
tmp X~fpf;
tmp (x~half)'ln(tnV)-tmp;
ser :*one;
FOR j .1to 6 DC BEGIN
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x :-x~one;
ser ser~cofjI/

END;

END;
FUNCTION betacf(a,b,x: do~le): double;
LABEL 1;
CONST

itrnaxziDO;
eps=3.0e-7;

VAR
tem,a,qa-,qa ,ern,0: double;
bz,bp;,bo,tlm,az,app: do~b~e;
arr,ao'Ol,ap: double;
m~: integer;

BEGIN
1.0

bm 10
az 10

qat a-1.;
qap. a- 1.0;

bz 1.O-qab'Afqap;
FOR mr 1 to itrna DO BEGIN

ter, em-eln;

ap zda.;
bp bz-db;
d :t-(ae.emqaberr*/((a-te"ap~tem)8;

an ap~daz;
pp bp-.Ibz;

ao'.d az;
am :zapftp p;

b b;/b;;
az p/o;
tz 1.0;
IF ((abslaz-aold)) <Cepslabsaz))) THEN. G.070 I

.witeln,'pause in BETACP');

.ritelrC'a or b too big, or itmax too sml';readln;
1: fletacf : a7
ENO';

FUNCTION betaila,b,x: double): doubl.e;

This is an incomplete beta function used to generate T and Z values. See
Nire?"cal Recipes.

VRbt: double;

BEGI N
IF ((A < 0.0) OR (A > 1.0)) THEN BEGIN

write'r('pause in routine BETAI'); read'n
END;
IF ((x 0.0) OR (z 1.0)) THEN bt :-D.0
ELSE bt :~exp(gamrrln~a~f)-gamrln(a)-gaffrmn(b)

.al1n(x)+b'in(1.D-A));
IF (x ' (..J(ab2Cl THEN

betai :~bt'betacf(a,b,x)Ia
ELSE betal : 1.0-bttbetacf(b,a,!.0-X)tb

END;

functiom tvalue(tstat:double;df:integer):double;

This is original, using a formula developed in Niuarerical Recipes.
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note: this returns the p val~e of t statistic and df, for one
tailed test.

be;in

end;

furction fva e~f'stat:douOle;df. of2:iteger:doile;

Th4.s retrns the p vale for fstat and the t-o degrees Of freedom.

beg'.
fva',e:=beta'' t?!l2,d-f2,df2/"df2dfl'fstat));
er d;

( hCs che:.,s to se f the g4.ver. %set" file is on the disk *

OK :GCDEAN.;

GC :CaAR;

RES , 7;

CK:= :3c-S-7 C
I; N7 ^.K 7 4E%
EMST :-FALSE'

BE D'

Ex:s,:z q;

ENC;

FZ .EXMS'2Ctemp:- ename), BCEN
Cthis checks to see f, the file name passed in is an the disk *

OK : BOO EAM.;
TEO-Op :F:LENAME;

TEMPP:=TEMP;
ASSIGN(fil ,TEmPP);

4$'-)
RESET (F IL);
01+1
OK:.IORESULT - 0;
IF NOT OK THEN
EXIST? :- FALSE

ELSE
BEGIN
CLCSEU2J ;
EXIST2:=7Rj E;
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ENO;
ENO;

PROCEDURE SAVE (SETg: lNPO);
(o this procedure writes the data set to a '.set' disk file
VAR OVER :CHAR;

TEMP :FILENAME;
label 0

JO: TEmP: ONA7'SETG.NAME-,'.SET');

BEGIN

O'.ER: =REA',K EV;

EN3
ELSE

IF uPASEOvER) z THEN.
BEG:,,

ASSG.',i.,,TmP);

ESE bec'-

read' r~setg. nae) ;
if kseg.',ane= q') or ksetg.narne='Q') then exit;
set mane: =set g.na~ne;
goto.10

e' d;
EN',;

PRC:EC3 RE RE : VAR SETG:jN7C);

C, tni's proced~.re reads a %~set" file fromn disk into the SE7G variablle ~
VAR PAjS[ CHR

TEMqP :F:ENAM[;
TEMPNAME :WORR3;
B[G N

wr:.tel n;
WRITE( 'Data f4.le narre? (',SETNAME, ') );READLNCTEMPNAME);
Ir TEMPNAMF~ <>

SETNArE:=TE MPNAME;
SETG.NAME: -SETNA10E;
if exist~setg.name) ther. begin.
TEMP:-0NATSETG.NAM.E. .SET');
ASS1NPLTM)
RESE7TCPL);
REAOCjIL,SETG);
CL3SE FIL);

ec79
else BEGNF,

wri tel n;
write('Oata file does rot e~lst
PAUSE:-~RE AO tEY

END;
E NO;

(~original '
PROCEDURE TWOSETS(VAR SETA,SFTB: INFO);
(' this provideds the promipts for reading two '.set' data files from' disk *

BEG'.
set4,indo.C36. 10, 79,I);
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wr itelI n;
WRITElnC FIRST SET: )
wri tel n(-******
READIN(SETA);
writeln;
writeln;
WRITEln('SECONO SET:');
writeln' i***P**PP-*'

REAOINkS1T8B,;
writCl n;

ENO;

PRCO'EURE Mu. Tmat;
(this proceC.'e muitip'ies matrices, it is used by the mU'LTINORMAL *
(variate generator, wt'ich is used to sample dependent Gl parameters

( note tha! it uses the matrices that are global variables to avoid 1)
k**. passing parameters and filling up the stack.
VAR X,Y,Z :IN-EGER;

S ?, dou.)e;
BEGIN

,AT 3. ROWS: ZE :=MAT1.RSZE;
MA73.CO SIZE:A72.COS:ZE;
FOR A : I TO MA7!.ROwSTZE CC

FOR V 1 TO MAT2.CCLS:2E GO BEGIN

FOR Z := TO M,71.OLSIZE COO

S" SUM -MArI.MATR:X:X,Z3.P AT2.MATR:X[Z,YJ;
MA3.mA7R:X-X,V:=S.h;

SREACASC;:;
(th',s reads a s4,ng'e color, asci' file and stores data in. a ".set" file 1)

7TYPE
FYL =TEX';

VAR
X,Y,Z :NTEGER;
FIL P'' I

GO,NAME :WO.RR3;
SETO NOo'
p :oc rt er;

BEG,%

ne.%(setg;;
set-indo.( 36 , C, 76, 122
WRITE'n;
WRITE('What ASCII file? : );REA0ON(NAM[);
wr- tein;
IF NOT EXIST?(NAME) THEN BEGIN
WA17EC'Data file does not exist..
PAUSE: =REA3KCY;

r;t e'r
EXIT;

E ND
ELSE BEGIN (I if the ascii file exists *

ASS IGN(F IL, NAME);
RE SET (F IL);
setg^.SIZE :-0;
WHILE NOT EOF(FIL) 0O BEGIN

setg'.SIZE:.Setg^.SIZE.l; (I increment number of data points '
REAfLN(FIL~setg.DATA~se.g-.SIZEj);

END;
CLOSE (F IL),
WRITE('Neo file name? : ');REACLN(setgA.NAMF);
SAVE(setg-); (0 save the data to a disk file of ".set" type '
ENO;
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wi ndow 1, 1,GO, 25);
rei ease (p);
END;

PROCEDURE WRITASCI 1;
(* this writes a data %Set" file to a single columnn asci file *
TVPE

FYL zTEXT;

VAR
X,Y,Z :INTEDER;;
FL :Pv,;
GO :WDjRRrD;
mne :f~lerne;
SE7TO :infopt-;
p :poir-ter;

BEC
mar., ,;
ne.(setg';
set-4rdo-',36, 1,,78, 16);
READ ,N Set9
1; NCD EX:S'(setg^.NA4E) THEN EX:T;
wR:TEC'Namne of ne. f !e ');REAO.N(NAME);
wr4 te r.;
ASS IGN,,iL,NA E);

REWR;TEF'..,);
for x:= 1 to setg'.SIZE1 do
WR7L(:~eg OT[I1:)

CLOSE"L)
w noc--, 1, 90,,25);
re'easep;);

PROCEOUR:! REECKEY;
(th'S P-ocedire alo. the user to enter data fromr the keyboard ~
(4 r.c a .set file

VAR
code,Q,;'T,X,Y,PYLE : INTEGER;
OVER :char;
TEMPNAME WORR3;
temp string!5;
ter,2 :doub 1 e;
setg infoptr;
p :pointer;

label 10;

markp;

set-ondo.(36, 10, 76,19);
write'r
WR17E( Name yodr data (',SETNAIE, ') ');REAOLN(TEMPNAME);
IF TEMPNAPE <> ''THEN (* if a name was entered use it ,other.ise use the defal2t name ~
SE7NAME:-TEMPNAME;

setg' .NAME: .SETNAME;
IF EXIST(setg.name, THEN beg'?'

wri tel n;
WRITE('File Excists, Overwrite?: )
OVER :- REAOKEV;
wri teln;

end
ELSE

OVER:-'Y';
IF UPCASEC OVER)= 'V THEN
BEGIN

writel n;
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WRITE(CEnter "o" when. done.')
QUIT:-0
X: -0;
WHILE QUIT-0 DO
BEGIN

X:=X.1;

WRITE( Enter ELEMEN7 [',X,']: ');REAOLNCTEmP);
(reading a character variable and converting to a real w~mber)

Ckeeps the ptogar, fromr bombing if a data entry error is made ~
va'l 'EMp,TEmP2,code);

if code=C then beg'r
(I if the text .as successfully converted to a n~ober ~
setq.AA[X3: .TEMP2;
setg-.S'ZE:-X;

E NO
else if upcase 'te-,n;'j)-^'then quit:=l

- he- the user enters a "q' the programr %417 stop *
Sprortirg 'or data points and save the data file

e&se beg-n
blee;;

sa'.e setz-);

release':,

(I T1-S 0ooeC~.re a72o-s you to charge a vale in the data set.

' t is r - easie- to .r~te and ascli file, ed", it, and rec it back in ~
VAR

code,7.,v : NTcER;
t errnstrirg:

SA:V, CHAN2 char;

setg :info:;tr;
p. pointer;

markp)

set-ihoO.(36, 10,18, 16);
REA. N (set-;
IF niot EXSTseg^.na.ne) THEN exit;

Wk'.E uCaSe('HAN )='V' 00
BE G:*%

WR'VE( Change Sometning?: ');CkANj:=REAOKEV;
ri te'r;
t ~e'n

I1 upcase(chanJ)z 'Y THEN
BEGIN
write(CWich element? :');intREAC(X);
writeln;
WRITE(Ol1d value. ',setg.ATA[X));
writeltl;
write('New valu~e ');do.ubleread~setg.data[A));
write in;
write('Save the data?: ');SAIV:cREAOKEV;
writ elr~;
write' n;
IF UPCASE(SA1V)r'V' THEN
BEG;N
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WR1TE('Name tne data : );REAC.Nksetg-.NArE);
write1ln;
SAVE Csetg-);

END;
END;

END;
release(p);

PRZZEZR: SEE;
(I T--s r'tes a data set to the Screr '
VAR X, '

setg :'~r
p :;o 'te-;

ne- set;

read' '~setg^;
1; rot Fx:TS-,SETgt.rar.e; THEN. ex",

TC X :tI7C setg-ts~ze C

release,':'

s ' a ke fc~ o. sort,,rg va'. es ar a ta set t

~'~s-as "'ted ver btar f. Pascal PrograrerS Library '

.tte e~ce7. c- c' tre -re te'nre the 1*9:' lane', I
I-a oa=t t,- *^ to at tPhe ;toceC~-e 'ror" try-rg to accessj

a data set e et at the zero 4rdeA Ccauses ar error) r

VAR !,2,,RPA.SE :I cul

case :chat;

rI- SETS.SIZE <= 1 THEN EXIT;
LI: L:-SE_3.S;ZE 3:'- 2 - 1;

R: =SE7.52E;
L2: I; L THEN

E N,
E SE

NJY :=SES.3A'A[';
SE'G.DAAR):=SETSDA'2
R:- R I;

BEGIN
SETG.DATA4I> -NY?;
EXIT

END
ENO;

L3: J :-L;
L4: I:- J1;

J:-J.J;
IF JAR THEN &CTC LB;
IU i-P THEN GOTD 7;

LS: IF SETS.CATA~JJ! SETG.DATA~2.:: THE%.

153



Li: SETG.OATA1]:SE.-CATA,';
GOTO L4;

LB: J -. 1;
I:- J DIV 2;
if1<1i then 1:-!;

L9: IF (NUM <- SETG.OAA[1) OR (2=L, THEN

BEGN
SETG.OATA[2j NUM

END
ELSE

aED

(I Tn 's ro ,.'ne gets o't* es:irateS and 90%, t-o-s".0et conlicerce ineral
(, for :"e Q~at4es -;tl m 'tiples of !3 ie. .12-3 etc. See Klejmen. f
war se:;g :*.rfopt-

beg --

set. dc.28 -,7BS
R~ED .se:g2

i - not EX:S-7se-g'.rne2 or (set;,.S'ZE <= 20' THEN beg;r,
.rite :rs-"c-ert sar-:'e svze (?C<20,C ASSAMP72NS DEPEND ON N>23 1)
pa.se: ='eaC-ey;
re' ease,)

rset ; s ze;
wr4*te -;
-, *e' ;)ease wa- :- Sar'r;
so-trse*.;

C, rsc,;

.wrte'",, Q..a':e Est, rat~cr ard 9C~a Co'fiaerce Intervals');
w?" te''n;

wr~teir, Pol-LoHi)
.r te' -C ___________________________1

c,!or'c:'cr'.:'e,t~acK,;

orA 9 do oeg- L:- KLE jN[ N PAGE 36 FCR ALGvCT;THM CISC ;SSION '

wr-teC 14':3 m setg .data~truncCx/10',):13:2);

end;
wiitel n;
P:-0.25;
repeat

q:.i,-p;

writeln(setg.data~trunc(n'p.1.645*scrt(npC1-p)))v1):13:2);

pause: .readkey;
rel ease (T);
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Procedujre Probab IL1
CTh's mr-u-r~ uses tne estimatc- fo, .t4norr<a' probabi ties to get a *
Sno- )ara-e,:'nc estimator of te p-otat-~ty of a value dra.' from the ~
d ata sel. s urtey'.g on.at4on begir. less tir X. 7he estimator

'ao'3--..'as Car, be 'o * in, ary bas~lc stats took. I used Elementary ~
('sta:'s*,Cs by 'xy. '1

var setg

r :irtoge-;

ne..,se*g',

se*D:%'0-sEtg .,@,,:

Dase:7"ea.'ey;
re'ease'2

-,:set;-. sze;
..r- le
.r- te', P'ease a -Sc-:';g

soi.l~rse*.:;;

i' p-r < 5; cr (71- 5; tne- beg; q ~r ant P-m must be 5 1)
-r-.e' '-s."cer dtaa so'eac ... C fcr Z:to hold .ater ~
pa~se: 2redd.ey;
re'ease,';;

.r te' -;

wr!*e' 'Lo ,Lc:7:5);
pau~se: %read. e,;
re'ease";;
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{Sm 64033.,C,655003}
jN.} (*t sets the coprocessor onr,
Unit OaveMenu;

This unit Contains a"! the Procedures necessary to support the scrolling
menus in the ain prograr.. The menu choices and attributes are stored
in mEN, r'c~ is a reccrc. Notice that this is a pointer variable, meanin.g
that tris va~iab'e resides in the HEAP, leaving the -tol. 64K of main data
me,-cry free for the apt' icationi (main program.). Also rote that this is a
gioba' vaniatze, el~miating the need to bass it as a parameter anong the
vaio.s ProceI.ures, micr *olid overload the stack section of memory.

t ses

Cr :CHA; C a text Screen to '
At : CE memro-y for late- use.*)

u~rsX 2rsv : integer; ................

me-eA-aray -- c' st''ng;JC
merPos~a-a, : 23 .,.C of- get;
me7irst~ar-ay fL.C V1 of ooeat
merSc-ee"±array :: 1:of Screertype;

text: men text;
pos :me-pOs;
F i rs st.:ne, r -st;
Screen:men.Screen;
max: array JO?1C of integer;
top:arraY [L . o' integer;
',eft:array '..10] of integr,;

F'leNa-e S'R:NC'1:;

VAR
A :integer;
Screen :cer~,
Menu :MeninfoPtr;
pause :Char;

Procedure ColorOnColor(l etterS,back~word);
Procedure Beep; C* origina' *)
Procedure DoubleReadcval value:douflle);
P'oced.se Int~ead(var value: integer);
Procedure Generi cgoAxl,yl,x2,x3,x4l,y4,LineType: integer);
Procedure Setwndo. y1,x1,y2,x2:integer);
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Proced~re HorzSetMer.;ch:4rtger;;
Procedure Scrollme (.'ch:irtege-;var go,go2:char;var temp:intege1);
Procedure Highight(xpos~ypos~clice, h:tege,).

Procedure MenuCormtroI,.4cr.:integer;var go,go2:char;var temp:integer);

Procedure Sh.irl~e~ieaI) (* turbo 4.0 or pasca! programT~ers library ~
Procedure Prtsc;

IJLEMENTAT7 CN

Proce-e Prtsz-; 1, fror~ Pascal Progrj7re'-s '.ibrary, By Que)

Tts P-ccedt e fc~ces a screen d~g-, to the printer wher in the

text mode, arc . w!ork In the graphic mode If a graphic screen

dar ' Ity s~cl as egadmp of the CHART iackage, has beer,

4rsta' I ed.

Va- Reg:Aeg'sters;
Beg-

ln~r',$5,Dlos.Reg' sters(RE'.,

Proced..'eSr- -: eSe: eae)

71S P~c - C's'Days a 0 rectory of the cjr'ent dsk sing the

f' 7e spez- fca*." crg vr sch as I., or 1.paS. 7aKe- lrv t 7e

Q~e boo. %n ~": asca' Prog-ane-s ' brary.

type
Str-n;9C^ 2't '8'

cons: o 0,T-s= 5 ;
VAR ,,o'Size :)ntege-;

Reg :reg sters;
_a :ARA';,.t3 0 BYTE;

A::t- :BY':;
Pause :CHiAR;

Beg-'
CLRSZ'R;
A77R:=;
CCLS;ZE := 9C :1. C.'JM%'S;
RES." :.DUFSCCA);
REGCD E 2 ;
REG.AX
MS:3S,3os. Re;' ste rs(RCC');

Co' o,'Cr.Coior Cye' "o., n1.e),;

TeBackgrorCO ack);
.riten;

'ieSpec :=FileSpec * CHRRCC;;
REG.DX :-OFSCFleSpec[:]);
REG.DS:- SEG(Fi~eSpec:'1);
RE^..CX:-ATTR;
RFG.AX: .SAEDO;
MSDOS(Oos.Registers(PEG));
1; LO(REG.AX) <> 0 THEN
Begin

writelr ('NC SU FLES FOUND )
PAUSE; -REAOKEV;
EXIT,

End;
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:F OTA[22] AND SIC <> 0 THEN WRITE ("C');
J : 1
WHILE 0TA[Jj <> 0 00

Begin
WRtTE(CHR(0TA[Cj,';
j : J+1

End;
REPEAT

REG.DX 0FS(07Al;
REG.DS SEG(OTA);
REG.AX S4,00;
MS0CS,0os.Reg'sters(REG));
UF LO(REG.AX) C THEN
Beg-r
F WHEREX 'kCCMNS -1 )*COLSIZE -1 THEN wr' 'telrn;
W ->_E (WHE;EX MOD CCLSIZE) <>1 0 WRITE (' ');
Ir OTA([22 AND $10 <> C THEN WRITE ('[Dj);
J =31;

W :'2 DTA[.1 <> C 00
Begin

WR:-E ( HR(TA[J));

En;

UN-:, LDkRED.AX) <> ;

PAU& E: .REAOKE Y;
End;

Procedu~re ColorColorlettes,back:word);

this allo.s 'me prograrmer to change the text color and the background
color .4thr one staternert.

textcol cr2'etters);
Text~ackgodtac2,;
End;

Procedu.re Bee;;
Begur
sound(SCCI;
delay (?5:);
nosound;
End;

Procedujre Do.bfleRead(var valwe:dowble);

This procedure does error Checking while reading in double precision nonnbers.
It keeps the program~ frorm aborting if the ni~Lmer is entered imporperly.

var temp~ FileNam;
code integer;

label 10;
Begin

val (teM,value,code);
if (code<.O) then Begir

Beep;
write('Re-enter the value: )
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goto 10;
End;

E nd;

Procedure Int~ead~var value:integer);

This proced~ire does error check'ng while reading in integer nurbers.
It keeps the programi fromn aborting if the nanber is entered improperly.

var te'n, P eNanie;
code integer;

late' C;
Beg,,

va' (terr-, va'.ie,code,;
if (Cote<>iD, then Beg'-

Beep;
.r'tek'e-erter the valwe: 1
goto .

End;
En.;

Proced..re GeeiBA,,YA,3x'y'Ln~p~ree)

This proced,..e dra.s a bc., starting at the x1,y! positon, ending at the
x.,y4 p05' tior. Horizontal di.viders are dra.r at posi.tions x2 and A3 if they
are set to sonrething other than zero. Allows for dra.ing .i th single or double
'ines, or a rr',A of both.

type
bar =strirgL79 ;

var
lyne, lyre? : bar;

X: intege';
Beg'n

if Li4ne'yoe=' ther aegir

lr:-92'17;

End
else if LineType-3 then Begin

HL:.9205;
h!2:-0196;
UR: .1397;
UL:.E2C:;
IR: .9198;
LL: . 2G0;
rl:=9192;
11: .0199;
VL: .9196;
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End
else if LineType-? then Beg -

UL:-CHAR(2O1);
HL: .CHAR(2O5);
UR:-CIHAR(2 87);
LR:-CHAR(1BB);
LL:-CHIAR(200);
rI:=CHARk185);

VL:HARC!6);
End;
LYNE:z;
lyne?:=
FOR X:=' TO v4v:Cc

LYNE:=LV',E-HL;
if LineTypez) the. for x:=: to Y4-y'-: do

lynie2:zlyne2.r'72
else lyrie2:'Iynie;

GC0XV4V,X;RTE(R);
FOR X:= X1. TO XZ 00

Beg-n
G0T0X'i~:,X;; WR7TE-V2,;

End;
IF X2<;,3 THEN Beg'n
OC TOX"'. ,x2');wRTL8'-7;WRELVNE2);

End;

CZ'CXVV,X3;WREI-);WR:TE(LNE2',;

Eno;

ProzeC..e Set ;ndo.'y,.,y2,A2:integer); C'turbo 4.C Cocuimentatir '

This p'.ocetd'.e Craos a box in the spec-.fied region ard clears it for a pop-

var I:integer;
Beg i

C~ rSCr;

textcc'.or ,nIo l

Co',orOrColo'.(hi te,b~aci<';

Procedure HorzSetMenu(4i ch: integer);

This procedure sets the positions for each line of text for a menu screen.
The coordinates are detirmined by the top of menu, left edge of menu, and
how many choices are on the menu.

war x:5nteger;
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for x:- 1 to Menu.mra,'-ch do Beg'n
"Mnu.pos[2,x~wic: 3 menu.o.n

End;
menu^.ps2,,wich'j:en'.Dos[,me-.ma.iCh,ich].2;
meu.os lwih'=?e .eftf.icnJ.-2;

End;

Proced, e horZdra.Me'x.(.*ch:irnteger);

This proceC.,'es u~ses the others to draw a men . screen.
* ..... r....,................P.......

var x:ir:ege-;
Begi-

C' rnc-yeIo-, n'ack)
Genle-Bo.,.topr.tcMe.c2',enE.ichef luchjme.toprichj?.

Co~oru,7,c'or,.- te,blaC~k;

Text~ac ced:'Ola ;

for - 1 to MP L.Ma'-.']- do Beg~n u~se x-1 to get around not letting X be zero*)

Proced-.e Sc-o'lmen.d.4ch:intege,;var, go~go2:cha.;var temfp:integer);

This proced.,e moves the highlighting bar up and down the menu as the arrow
keys are Asec. It also sets the menu Choice each time it m~oves the bar
so that w~ler the enter key is hlit the proper men. choice will be selected.

Begin
gc:=readkey;
if go='P then

if temp4en.A.max..Vrj then tem-T,:=terpK
else terip:=O;

if go='H4 ther,
if temp-C^ then temp:=erp-!
else temp:=men^rn.41ch);

go?:= en 'te;xt teTp, i ch]j;
End;

Procedure IHighi ight(xpos,ypos, chcice,wich.-integer);

This procedure writes a string of text in yellow or cyan highliting.

Begin
ColorOnColor(WHJTE, cyar3;
gOto~APOS,YpOS);wri te(Men. text[choice,wichj);
ColorOnColor~whi te,black;

End;
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Procedure MenuContro' .4 ch:integer;var go,go2:char;var terM:integer);

This procedure is the master control module that takes over any time the
program enters a menu~ procedure. It handles the screen drawing, scrolling,
and retu~rns the proper choice the user selected to the individu~al menu
procedure in the main menu, so that choice can be executed. Note that if this
pa'-ticiair men 5 has been called once before, the screen need not be drawn
again since ", was stored in memory. The menu screen is simply recaled from
memory .i tr the index WIH

IFF (Mer....FirstL.'ch]) THEN Begin
Ken.. .First,.iCh):=PALSE;
Hot zSet men.(ic h);
hot zdra.Mern5 4.ich);
mern.^.Scree-4hj:zScreer-;

Erc
ELSE 4f Cgo<>'P ) and (go-'H ) tre'- geg -
Sc'ee-:=men-.Screer' .- ch;

Hig,4 gX t e'5/eft chj, .tem, Men .poh] , men-ps2 tepwich, em, '

GO: .REAj'K;
if go=#^, the" Beg~n

Screen:=:menL..Screen:. ch-;
Sc-' me o'.h, go, go?, temo',;
Hi g "igntkmen-..pos[,, temrp, .'ich], meru^.pos[2, tep,siichj, ten, -ic0);

if go~ch*r1,SO:Z then
go: -gc2;
frx:z 1 to Menu..max[.ichl-: do
if upcase~go)-men ^.textfx,.io ,'Mj then Begin,

te~np: =A;
Screen-: menr^.Screenf[i oh3;

Er,,;

End;

This 4''tilaizes the pointer heap Yariab~es ant sets their intial values.

newCmer',4;
ne- Screer);
Screen :- PTR($88'C,S.OO;
for x:- I to 10 do

Menu'.First~x]:-true;
End.
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